
The Mathematics of Zome
Tom Davis

tomrdavis@earthlink.net
http://www.geometer.org/mathcircles

July 4, 2007

Abstract

We will calculate the lengths of all the Zome struts and show that the locations of the Zome balls in
an arbitrary configuration satisfy a very simple rule that involves the golden ratio.

1 Introduction

The Zome system is a construction system based on a set of plastic struts and balls that can be attached
together to form an amazing set of mathematically or artistically interesting structures. There is a fair
amount of deep mathematics involved, and the purpose of thisarticle is to look at some of that.

Anyone who has played with the Zome system is usually amazed at first how well things work out. It
allows one to construct a huge number of structures, but no matter how complex the structure, it seems
that if two zome balls are near each other and each has a hole pointing at the other, the holes will be of
the correct shape and in the correct orientation that a standard Zome strut will connect them. There is a
mathematical reason for this, and the purpose of this article is to demonstrate that reason. The article does
not concern how to build complex Zome structures. For that sort of information, there are hundreds of
resources on the internet.

It will be much easier to follow along if you have at least a small set of Zome parts (and the larger your
set, the better, although large sets tend to become expensive). It is also useful for you to have fooled
around a bit with the system before trying to understand someof the mathematics expressed here. This
article includes photos of various Zome structures, but youwill usually find the arguments much easier
to follow if you build a physical model of each of those structures yourself so that you can more easily
manipulate the 3-D version and see it from many points of view.

For information on Zome and for an on-line way to order kits orparts, see:

http://www.zometool.com

The main Zome strut colors are red, yellow and blue and most ofwhat we’ll cover here will use those as
examples. There are green struts that are necessary for building structures with regular tetrahedrons and
octahedrons, and almost everything we say about the red, yellow and blue struts will apply to the green
ones. The green ones are a little harder to work with (both physically and mathematically) because they
have a pentagon-shaped head, but can fit into any pentagonal hole in five different orientations. With the
regular red, yellow and blue struts there is only one way to insert a strut into a Zome ball hole. The blue-
green struts are not really part of the Zome geometry (because they have the “wrong” length). They are
necessary for building a few of the Archimedian solids, likethe rhombicuboctahedron and the truncated
cuboctahedron.

2 The Zome Ball

Look carefully at a Zome ball. (It is better to look at a physical ball, but an image of one appears in
Figure 1. It is highly symmetric, and has holes that will accept struts of three shapes: rectangles with an
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aspect ratio of roughly1 : 2, equilateral triangles and regular pentagons. Every pentagonal hole looks the
same: it is surrounded by 5 rectangular holes and 5 triangular holes. The same can be said of every hole:
the shapes and orientations of the neighboring holes are thesame for every hole in the ball.

Figure 1: The Zome Ball

Another way to convince yourself that all the holes of a certain shape are basically identical is to place a
Zome ball on a table balanced on a hole of a particular shape (say a rectangle). Now take another Zome
ball and place it onany of its rectangular holes (or hole of the same shape as the firstball). If you rotate the
second ball so that the rectangles on top have the same orientation, you will find that every hole matches
in shape and direction in the two balls.

There are 12 pentagon-shaped holes and if you imagine that the pentagons were all left in their planes but
expanded until their edges touched the nearest pentagon edges, the resulting figure would be a dodecahe-
dron (a regular 12-sided polyhedron).

If you think about this pentagon expansion, every pair of adjacent pentagons would close over a rectangu-
lar hole, so there are the same number of rectangular holes asthere are edges in a dodecahedron; namely,
30.

Finally, again visualizing the expansion of the pentagonalholes, each triangle on the Zome ball will be
covered by a vertex of the final dodecahedron, so there are thesame number of triangles as there are
vertices of a dodecahedron; namely, 20.

A dual argument can be made: instead of expanding the pentagons until their edges merge, expand the
triangles in the same way, and the resulting figure will be a regular icosahedron – a polyhedron with 20
identical triangluar sides. Each vertex of the resulting icosahedron (of which there are 12) corresponds to
a pentagonal hole in the Zome ball and each edge of the icosahedron (of which there are 30) corresponds
to one of the rectangular holes in the Zome ball.

Luckily, we obtain the same counts using both approaches: 12pentagonal holes, 20 triangular holes and
30 rectangular holes for a total of12 + 20 + 30 = 62 holes.

Finally, let’s look at the orientations of Zome balls in any sort of structure. If you hook together any sort
of combinations of balls and struts in such a way that none of the struts are forced to bend, then every
Zome ball in the entire structure will have exactly the same orientation: if one ball has a rectangle pointing
in a particular direction with a particular orientation, thenevery ball in the structure will have one of its
rectangles pointing in the same direction and with the same orientation. Figure 2 shows a central ball with
one strut of each of the major colors and with a Zome ball attached to the end of each. Note that the balls
all have the same orientation.

It is pretty easy to convince yourself of this: just place a strut of each shape into a Zome ball and look at
the balls on the other ends of the struts. In every case, the adjacent ball has the same orientation, so if you
begin at any ball and follow a sequence of struts to another one, you’ll wind up at a ball that has the same
orientation. This is true even of the green (and even of the blue-green) struts.
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Figure 2: Zome Ball Orientation

3 Zome Struts

In a standard Zome set there are struts of three lengths in each color: red, yellow and blue. It is now
possible to purchase other lengths of some of them: short andsuper-short. We will call the original nine
struts the “standard struts”.

The usual labeling of the standard struts isB1, B2, B3, Y1, Y2, Y3, R1, R2 andR3 for the blue, yellow
and red struts, and the smaller numbers refer to the shorter struts. ThusB1 is the shortest blue strut and
R3 is the longest red one.

The physical lengths of the struts are chosen so that their mathematical lengths are perfect. If we consider
a structure that has a Zome ball at the end of every strut, in a mathematical sense, the centers of the
Zome balls should be considered to be the endpoints of the struts embedded in the balls. Thus the “true”
mathematical length of a strut should be the distance between the centers of two Zome balls attached to
the ends of the strut.

Measuring in terms of these mathematical lengths, the strutlengths follow a very regular pattern: in each
color, the lengths increase by a constant factor calledτ (this is the Greek letter “tau” and it stands for the
so-called “golden ratio”: a number that is approximately 1.618).

Thus the mathematical length ofB2 is τ times as long as aB1, and the length ofB3 is τ times the length
of B2 (or τ2 times the length ofB1). The same relation holds for struts of every color, including the
greens and even the blue-greens.

We will assign an arbitrary length of1 to B1, the shortest blue strut. With this assignment, the lengthsof
B2 andB3 are thereforeτ andτ2, respectively.

From Figure 3 we can glean enough information to calculate the lengths of the yellow struts. The planar
figure is made of two perpendicular blue struts,B1 andB3. The three yellow struts all are of typeY2. It
is clear from the construction that a yellowY2 strut is the hypotenuse of a right triangle whose sides have
lengths1/2 andτ2/2. Using the Pythagorean theorem and a bit of messy algebra (which we will be able
to do much more easily after we have examined some propertiesof τ in Section 4.1) yields the result that
the length of theY2 yellow strut isτ(

√
3/2). This implies that the length ofY1 is (

√
3/2) and the length

of Y3 is τ2(
√

3/2) since all the struts of the same color have lengths that are simply multiples ofτ of each
other.
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Figure 3: Yellow Struts

Figure 4: Red Struts

Similarly, the length of the red struts can be calculated from the planar Figure 4. This time the structure is
built from two perpendicular blue strutsB1 andB2 and the red struts are allR1. This time theR1 forms
the hypotenuse of a right triangle whose other sides have lengths1/2 andτ/2. Again, an ugly calculation
yields the length ofR1 as

√
2 + τ/2, so the lengths ofR2 andR3 are τ

√
2 + τ/2 andτ2

√
2 + τ/2,

respectively. See Section 4.1 for the details of the calculation.

4 The Golden Ratio τ

The numberτ is defined to be the largest root of the equation

x2 = x + 1. (1)

which can easily be solved using the quadratic formula or anyother method, and the resulting value forτ
is (1 +

√
5)/2. But equation 1 allows us to express powers ofτ in terms ofτ itself. Obviously we obtain

directly from equation 1 thatτ2 = τ + 1.

What aboutτ3? Well,τ3 = τ(τ2) and we know thatτ2 = τ + 1, soτ3 = τ(τ + 1) = τ2 + τ = 2τ + 1.

We can, using the same approach, obtain expressions forτ4, τ5, and so on, yielding the following table:
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τ1 = 1τ + 0
τ2 = 1τ + 1
τ3 = 2τ + 1
τ4 = 3τ + 2
τ5 = 5τ + 3
τ6 = 8τ + 5

A quick glance at the table shows that the coefficients of the expansion are just the Fibonacci numbers,
and a simple inductive argument shows us that this is true.

Since the lengths of the Zome struts of any color are just multiples of a basic length by some power ofτ ,
then every strut length can also be expressed as an integer linear combination of1 andτ times the length
of the basic strut of that color.

A standard Zome set has a certain shortest length of the blue strut which we defined to be1, but in prin-
ciple, shorter struts could be obtained by continuing to divide the lengths byτ . It is somewhat amazing,
but dividing by powers ofτ also yields integer combinations of1 andτ . For example,

1

τ
= τ − 1,

and this can be obtained from equation 1 by dividing both sides byτ and regrouping terms. But now that
the value of1/τ is known, we can obtain in a similar way values for1/τ2, 1/τ3, et cetera, and the table
above can be extended in the negative direction. It is a good exercise for the reader to check these values:

τ−4 = −3τ + 5
τ−3 = 2τ − 3
τ−2 = −1τ + 2
τ−1 = 1τ − 1
τ0 = 0τ + 1
τ1 = 1τ + 0
τ2 = 1τ + 1
τ3 = 2τ + 1
τ4 = 3τ + 2

The coefficients for the negative powers ofτ look a little strange: the signs alternate, but the values are
just the familiar Fibonacci numbers. The usual definiton of the Fibonacci numbers starts withF0 = 0 and
F1 = 1, and once any two adjacent values are known, the next is obtained using the recurrence relation
Fn = Fn−1 + Fn−2.

The nice thing is that the same recurrence relation can be used to obtain “reasonable” values forF−1, F−2

and so on. What should be the value, for example, ofF−1? Well, it should satisfy:

F−1 + F0 = F1,

and since we know the values ofF0 andF1, we obtainF−1 = 1.

Continuing in the same way, we can obtainF−2 = −1, F−3 = 2, F−4 = −3 and so on. Note that these
follow the same pattern as the coefficients of the simplified negative powers ofτ in the table above. It is
easy to show that this pattern continues. In fact, the general formula forτn, wheren is positive, negative,
or zero, is given by:

τn = Fnτ + Fn+1,

where the values of the Fibonacci numbers are extended to negative values as described above.

4.1 Calculating Strut Lengths

Using the relations we have discovered in the first part of this section, it is easy to work out the lengths of
the red and yellow struts in terms of the blue ones.
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Let’s begin with the yellow struts. As we saw in Section 2, thelength ofY2 is the hypotenuse of a right
triangle with sides having lengths1/2 andτ2/2. If that unkown length isy2, we have:

y2 =

√

(1

2

)2

+
(τ2

2

)2

.

Thus:

y2
2 =

1 + τ4

4
.

Sinceτ2 = 1 + τ , we can square both sides to obtainτ4 = (1 + τ)2 which we can substitute into the
equation above:

y2
2 =

1 + (1 + τ)2

4

=
1 + 1 + 2τ + τ2

4

=
2(1 + τ) + τ2

4
.

Now, since(1 + τ) = τ2 we can substituteτ2 for (1 + τ) in the equation above and obtain:

y2
2 =

2τ2 + τ2

4

y2
2 =

3τ2

4

y2 = τ

√
3

2
,

which leads to the values for the lengths ofY1, Y2 andY3:
√

3/2, τ
√

3/2, andτ2
√

32, respectively.

To calculate the length of the red struts, we again use the Pythagorean theorem in conjunction with the
structure illustrated in Figure 4. The lengthr1 of R1 is given by:

r1 =

√

(1

2

)2

+
(τ

2

)2

r2
1 =

1

4
+

τ2

4

=
1 + τ2

4
.

Sinceτ2 = 1 + τ , this becomes:

r2
1 =

2 + τ

4

r1 =

√
2 + τ

2
.

Thus the lengths ofR2 andR3 areτ
√

2 + τ/2 andτ2
√

2 + τ/2, respectively.

5 Zome Ball Coordinates

Because of the angles of the Zome ball holes, it turns out thatany combination of red, blue, yellow (and
even green) struts will leave a ball at a point with nice coordinates, based on the following coordinate
system:
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As before, call the length of the shortest blue strut 1. Plug three of these shortest blues into a Zome ball so
that they are all mutually perpendicular, and form a right-handed coordinate system. If that original Zome
ball has coordinates(0, 0, 0), then the centers of Zome balls stuck on the ends of each of thecoordinate
axis struts will have coordinates(1, 0, 0), (0, 1, 0) and(0, 0, 1). This will be our coordinate system and we
will now examine the coordinates of the centers of Zome ballswhich are hooked together in an arbitrary
fashion to a ball that is designated to lie at the origin of oursystem with some set of short blues marking
thex, y andz axes.

It turns out that no matter what combinations of struts of anylengths are stuffed into the holes, with any
linkage whatsoever, the coordinates of any reachable Zome ball will have the form(α, β, γ), whereα, β
andγ are numbers of the form(aτ + b)/2, wherea andb are integers (possibly negative or zero) andτ is
the golden ratio:τ = (1 +

√
5)/2 ≈ 1.618039887.

Now we will demonstrate our main result, that the coordinates of any zome ball reachable from a Zome
ball at(0, 0, 0) all have the form:

(
aτ + b

2
,
cτ + d

2
,
eτ + f

2
) (2)

What we need to do to prove this is to show that when any strut isplugged into any Zome ball hole
having coordinates like those above, the coordinates of a ball placed at the end of the strut will also
have coordinates with the same property. Since the ball at the origin satisfies the condition (namely
a = b = c = d = e = f = 0) then the condition is preserved as each strut is added to anyspatial path.

Note: It is possible to purchase special “half blue” and “half green” struts that are half the length of the
normal ones. If these are allowed in the system, the result holds except that the denominator in Equation 2
must be changed from2 to 4.

This is true of the red, blue, yellow and green struts, but we will only prove it here for the red, blue and
yellow ones. The proof for the green struts is similar, but there are five possibilities to consider since a
green strut can be pushed into a pentagonal hole in five different orientations. Working out the details for
the green struts is not difficult, but there are five cases, so it is a good exercise to do this.

Figure 5: Yellow Strut

We will demonstrate our result for the red, blue and yellow struts by showing that if a particular strut
of a particular color is put in the Zome ball at the origin, thecoordinates of the center of the ball at
the end of the strut have the correct form. Then, since the actual strut used can have a length that is a
multiple by a power ofτ of the particular strut, the coordinates for a different length strut will simply

7



be multiplied by some power ofτ . But we have shown that such a multiplication will just yieldanother
integer combination of1 andτ , so every strut coming out of the origin will yield an endpoint having the
form shown in equation 2.

Finally, since we will be, in general, placing the strut intoa ball that is not at the origin, but into a ball
whose coordinates have the form shown in equation 2, we will simply be adding coordinates of those
forms, and the resulting ball at the end of the strut will havethe required coordinates.

Insert three short blue struts to represent the perpendicular coordinate axes and then add three more
opposite them to represent the negative axes. When you examine the Zome ball with these six positive
and negative axes, they divide the ball into eight octants that, apart from sign and labeling of the axes,
are equivalent. Thus we really need only examine the holes inthe Zome ball that fall into one octant or
boundary of that octant. A quick look will make it obvious that in each octant there is essentially only two
kinds of holes into which a blue strut can be inserted (an axisand a non-axis blue hole), two into which
a yellow can be inserted (in one of the planes determined by two axes and one making equal angles with
all the axes, and only one for the red struts (again in a plane determined by two of the axes).

We need to show that if we assume that the Zome ball has coordinates(0, 0, 0) the other end of each of
those five types of struts will have coordinates satisfying Equation 2.

Figure 6: Blue Struts

First note that if any particular strut satisfies these conditions, then all struts of the same color inserted
into the same hole will work, since every strut’s length is a power of τ times another strut of the same
color, and we know that multiplying coordinates by a power ofτ can always be reduced to a value that is
linear in1 andτ as we showed in Section 4.

The easiest struts to consider are the blue axial struts. With a short blue, the coordinates will always look
something like(±1, 0, 0), (0,±1, 0) or (0, 0,±1), and these all satisfy the conditions of equation 2.

The red and yellow struts that lie in a plane determined by a pair of axes are also quite easy. In fact,
Figure 3 shows that aY2 strut from the origin has coordinates±1/2,±τ2/2 = (1 + τ)/2, and0 in some
order, depending on the particular pair of axes that determine the plane

Figure 4 gives a similar argument that theR1 struts have coordinates±1/2,±τ and0, in some order.

A yellow strut that makes equal angles with all three axes is shown in Figure 5. If you construct it with
threeB1 axes and threeY1 struts as shown, it is clear that the ball in the center of the yellow struts has
coordinates(±1/2,±1/2,±1/2).
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Finally, the trickiest standard strut turns out to be a blue strut in one of the off-axis holes.

In Figure 6, the coordinate axes are made of aB1, a B2 and aB3. From the illustration, it is clear that
the central ball, relative to the origin, has coordinates±1/2, ±τ/2, and±τ2/2 = ±(1 + τ)/2, in some
order.

An interesting consequence of this is that if we had blue struts in every length, including1/τ , 1/τ2, . . . ,
and if all we cared about were the locations of the Zome balls in the final structure, then there would be
no need for the yellow, red or green balls since simple movements in the directions of the coordinate axes
with these blue struts can get us to any ball location reachable using the red, yellow and green struts.
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6 Appendix

Relative strut lengths:

In what follows, “HB” stands for “half blue”, “G” for “green”, “HG” for “half green” and “BG” for
“blue-green”.

τ = 1+
√

5

2
= 1.618033988749894848204586834

sin 60◦ = 0.8660254037844386467637231707
sin 72◦ = 0.9510565162951535721164393333

B1 = 1
B2 = τ
B3 = τ2

Y1 =
√

3

2
= sin 60◦

Y2 = τ
√

3

2
= τ sin 60◦

Y3 = τ2
√

3

2
= τ2 sin 60◦

R1 =
√

2+τ

2
= sin 72◦

R2 = τ
√

2+τ

2
= τ sin 72◦

R3 = τ2
√

2+τ

2
= τ2 sin 72◦

HB2 = τ

2

HB3 = τ
2

2

HB4 = τ
3

2

G0 =
√

2

τ

G1 =
√

2
G2 = τ

√
2

HG1 =
√

2

2

HG2 = τ
√

2

2

HG3 = τ2
√

2

2

BG1 = 1
BG2 = τ
BG3 = τ2

Some of the information in this article is based on the web page called Analytic Zome:

http://www.rawbw.com/ davidm/zome/
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