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Abstract

We will calculate the lengths of all the Zome struts and shuat the locations of the Zome balls in
an arbitrary configuration satisfy a very simple rule thabimes the golden ratio.

1 Introduction

The Zome system is a construction system based on a set 6€ats and balls that can be attached
together to form an amazing set of mathematically or actdlyf interesting structures. There is a fair
amount of deep mathematics involved, and the purpose oéttiide is to look at some of that.

Anyone who has played with the Zome system is usually amatzéstahow well things work out. It
allows one to construct a huge number of structures, but rtterm@ow complex the structure, it seems
that if two zome balls are near each other and each has a hiolingaat the other, the holes will be of
the correct shape and in the correct orientation that a atdridbme strut will connect them. There is a
mathematical reason for this, and the purpose of this aiigdb demonstrate that reason. The article does
not concern how to build complex Zome structures. For thetafinformation, there are hundreds of
resources on the internet.

It will be much easier to follow along if you have at least a #raat of Zome parts (and the larger your
set, the better, although large sets tend to become exjggndivis also useful for you to have fooled
around a bit with the system before trying to understand sohtlee mathematics expressed here. This
article includes photos of various Zome structures, butwdlusually find the arguments much easier
to follow if you build a physical model of each of those sturets yourself so that you can more easily
manipulate the 3-D version and see it from many points of view

For information on Zome and for an on-line way to order kitparts, see:
http://www.zometool.com

The main Zome strut colors are red, yellow and blue and mostat we’'ll cover here will use those as
examples. There are green struts that are necessary fdimgugitructures with regular tetrahedrons and
octahedrons, and almost everything we say about the rddwyahd blue struts will apply to the green
ones. The green ones are a little harder to work with (botlsichity and mathematically) because they
have a pentagon-shaped head, but can fit into any pentagaeahHive different orientations. With the
regular red, yellow and blue struts there is only one way $eiiha strut into a Zome ball hole. The blue-
green struts are not really part of the Zome geometry (bectiey have the “wrong” length). They are
necessary for building a few of the Archimedian solids, like rhombicuboctahedron and the truncated
cuboctahedron.

2 TheZomeBall

Look carefully at a Zome ball. (It is better to look at a phdiball, but an image of one appears in
Figure 1. It is highly symmetric, and has holes that will gatcgtruts of three shapes: rectangles with an



aspect ratio of roughly : 2, equilateral triangles and regular pentagons. Every gent@ hole looks the
same: it is surrounded by 5 rectangular holes and 5 trianpolas. The same can be said of every hole:
the shapes and orientations of the neighboring holes asathe for every hole in the ball.

Figure 1: The Zome Ball

Another way to convince yourself that all the holes of a darshape are basically identical is to place a
Zome ball on a table balanced on a hole of a particular shayea(sectangle). Now take another Zome
ball and place it omny of its rectangular holes (or hole of the same shape as théf#iii$t If you rotate the
second ball so that the rectangles on top have the sameatditentyou will find that every hole matches
in shape and direction in the two balls.

There are 12 pentagon-shaped holes and if you imagine thattitagons were all left in their planes but
expanded until their edges touched the nearest pentages.atig resulting figure would be a dodecahe-
dron (a regular 12-sided polyhedron).

If you think about this pentagon expansion, every pair ofedit pentagons would close over a rectangu-
lar hole, so there are the same number of rectangular hotbsEsare edges in a dodecahedron; namely,
30.

Finally, again visualizing the expansion of the pentagdmdés, each triangle on the Zome ball will be
covered by a vertex of the final dodecahedron, so there arsatme number of triangles as there are
vertices of a dodecahedron; namely, 20.

A dual argument can be made: instead of expanding the pemgagtiil their edges merge, expand the
triangles in the same way, and the resulting figure will begal@ icosahedron — a polyhedron with 20
identical triangluar sides. Each vertex of the resultimmsahedron (of which there are 12) corresponds to
a pentagonal hole in the Zome ball and each edge of the icdsainéof which there are 30) corresponds
to one of the rectangular holes in the Zome ball.

Luckily, we obtain the same counts using both approachepehfagonal holes, 20 triangular holes and
30 rectangular holes for a total ©? + 20 + 30 = 62 holes.

Finally, let's look at the orientations of Zome balls in amytof structure. If you hook together any sort
of combinations of balls and struts in such a way that nonéefstruts are forced to bend, then every
Zome ball in the entire structure will have exactly the samerdation: if one ball has a rectangle pointing
in a particular direction with a particular orientationethevery ball in the structure will have one of its
rectangles pointing in the same direction and with the sameatation. Figure 2 shows a central ball with
one strut of each of the major colors and with a Zome ball b#ddo the end of each. Note that the balls
all have the same orientation.

It is pretty easy to convince yourself of this: just placeratsdf each shape into a Zome ball and look at
the balls on the other ends of the struts. In every case, jaeet ball has the same orientation, so if you
begin at any ball and follow a sequence of struts to anotheyywu’ll wind up at a ball that has the same
orientation. This is true even of the green (and even of the-green) struts.



Figure 2: Zome Ball Orientation

3 Zome Struts

In a standard Zome set there are struts of three lengths maedor: red, yellow and blue. It is now
possible to purchase other lengths of some of them: shorsamer-short. We will call the original nine
struts the “standard struts”.

The usual labeling of the standard strutdBis B, Bs, Y1, Y, Y3, R1, Ro and R3 for the blue, yellow
and red struts, and the smaller numbers refer to the shanes.sThusB; is the shortest blue strut and
R3 is the longest red one.

The physical lengths of the struts are chosen so that thefreneatical lengths are perfect. If we consider
a structure that has a Zome ball at the end of every strut, imthematical sense, the centers of the
Zome balls should be considered to be the endpoints of thessgmbedded in the balls. Thus the “true”
mathematical length of a strut should be the distance bettheecenters of two Zome balls attached to
the ends of the strut.

Measuring in terms of these mathematical lengths, the lstngths follow a very regular pattern: in each
color, the lengths increase by a constant factor callétiis is the Greek letter “tau” and it stands for the
so-called “golden ratio”: a number that is approximate§1B).

Thus the mathematical length 8% is 7 times as long as &, and the length oBj3 is T times the length
of B, (or 72 times the length of3;). The same relation holds for struts of every color, inahggihe
greens and even the blue-greens.

We will assign an arbitrary length afto B;, the shortest blue strut. With this assignment, the lengths
B, andBjs are therefore andr?, respectively.

From Figure 3 we can glean enough information to calculadehgths of the yellow struts. The planar
figure is made of two perpendicular blue struts,and Bs. The three yellow struts all are of type. It

is clear from the construction that a yelld¥ strut is the hypotenuse of a right triangle whose sides have
lengthsl /2 and72 /2. Using the Pythagorean theorem and a bit of messy algebiatwe will be able

to do much more easily after we have examined some propeftie Section 4.1) yields the result that
the length of thé&;, yellow strut isT(1/3/2). This implies that the length &f; is (1/3/2) and the length

of Yz is 72(1/3/2) since all the struts of the same color have lengths that amglgimultiples ofr of each
other.



Figure 3: Yellow Struts

Figure 4: Red Struts

Similarly, the length of the red struts can be calculatedhftbe planar Figure 4. This time the structure is
built from two perpendicular blue strufs; and B, and the red struts are all;. This time theR; forms
the hypotenuse of a right triangle whose other sides hagghsi/2 andr /2. Again, an ugly calculation
yields the length of?; as+/2 + 7/2, so the lengths of2; and R3 are /2 + 7/2 andr2y/2 + 7/2,
respectively. See Section 4.1 for the details of the caliara

4 The Golden Ratio

The numberr is defined to be the largest root of the equation
=z +1. (1)

which can easily be solved using the quadratic formula orahgr method, and the resulting value for
is (1 4+ +/5)/2. But equation 1 allows us to express powers af terms ofr itself. Obviously we obtain
directly from equation 1 that? = 7 + 1.

What about3? Well, 73 = 7(72) and we know that? = 7 + 1,s07® = 7(7 + 1) = 72 + 7 = 27 + 1.
We can, using the same approach, obtain expressiond fof, and so on, yielding the following table:
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A quick glance at the table shows that the coefficients of ¥p@esion are just the Fibonacci numbers,
and a simple inductive argument shows us that this is true.

Since the lengths of the Zome struts of any color are justipie#t of a basic length by some powerngf
then every strut length can also be expressed as an integar tombination of andr times the length
of the basic strut of that color.

A standard Zome set has a certain shortest length of the trlutenghich we defined to bg, but in prin-
ciple, shorter struts could be obtained by continuing tad#ithe lengths by. It is somewhat amazing,
but dividing by powers of also yields integer combinations bandr. For example,

1

—=7—-1,

.
and this can be obtained from equation 1 by dividing bothsslder and regrouping terms. But now that
the value ofl /7 is known, we can obtain in a similar way values g2, 1/73, et cetera, and the table
above can be extended in the negative direction. It is a geectise for the reader to check these values:
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The coefficients for the negative powersrolook a little strange: the signs alternate, but the values ar
just the familiar Fibonacci numbers. The usual definitorheffEibonacci numbers starts witly = 0 and

F1 = 1, and once any two adjacent values are known, the next isr@utaising the recurrence relation
F,=F, 1+ F,».

The nice thing is that the same recurrence relation can libtasbtain “reasonable” values fét_ 1, F_o
and so on. What should be the value, for exampld; of? Well, it should satisfy:
F_i+Fy=F,

and since we know the values B§ andF, we obtainF_; = 1.

Continuing in the same way, we can obtd#n, = —1, '3 = 2, ', = —3 and so on. Note that these
follow the same pattern as the coefficients of the simplifiegative powers of in the table above. It is
easy to show that this pattern continues. In fact, the géf@raula for 7, wheren is positive, negative,
or zero, is given by:

T :FnT+Fn+17

where the values of the Fibonacci numbers are extended @iinegalues as described above.

4.1 Calculating Strut Lengths

Using the relations we have discovered in the first part afskiction, it is easy to work out the lengths of
the red and yellow struts in terms of the blue ones.



Let's begin with the yellow struts. As we saw in Section 2, ldnegth ofY; is the hypotenuse of a right
triangle with sides having lengthg2 andr?2 /2. If that unkown length ig, we have:

S (ERIE

2_1+T4
y2_ 4 .

Thus:

Sincer? = 1 + 7, we can square both sides to obtaih= (1 + 7)? which we can substitute into the
equation above:

s 1+(147)?
Bo=

1+1+27+72
2(1+7) + 72
1 :

Now, since(1 + 7) = 72 we can substitute? for (1 + 7) in the equation above and obtain:

2 272 4 72
y2 - 4
372
2 _
y2 - 4
V3
= T—
Y2 2 3

which leads to the values for the lengthsiaf Yz andYs: v/3/2, 7v/3/2, andr?+/32, respectively.

To calculate the length of the red struts, we again use thigaggrean theorem in conjunction with the
structure illustrated in Figure 4. The lengthof R, is given by:
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Sincer? = 1 + 7, this becomes:
24T
2 _
Tl = 4
24T
T =
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Thus the lengths oR; andR3 arer+/2 + 7/2 and72/2 + 7/2, respectively.

5 ZomeBall Coordinates

Because of the angles of the Zome ball holes, it turns outaimatombination of red, blue, yellow (and
even green) struts will leave a ball at a point with nice cauates, based on the following coordinate
system:



As before, call the length of the shortest blue strut 1. Phuge of these shortest blues into a Zome ball so
that they are all mutually perpendicular, and form a rigathed coordinate system. If that original Zome
ball has coordinatef, 0, 0), then the centers of Zome balls stuck on the ends of each afothelinate
axis struts will have coordinatés, 0, 0), (0,1,0) and(0, 0, 1). This will be our coordinate system and we
will now examine the coordinates of the centers of Zome helfich are hooked together in an arbitrary
fashion to a ball that is designated to lie at the origin of system with some set of short blues marking
thex, y andz axes.

It turns out that no matter what combinations of struts of lemgths are stuffed into the holes, with any
linkage whatsoever, the coordinates of any reachable Zaih&ail have the form(«, 5, ~), wherew, 3
and~ are numbers of the forrfur + b) /2, wherea andb are integers (possibly negative or zero) ard
the golden ratior = (1 + /5)/2 ~ 1.618039887.

Now we will demonstrate our main result, that the coordigatieany zome ball reachable from a Zome
ball at(0, 0, 0) all have the form:

ar+b ct+d et+ f
(LR, RS e @

What we need to do to prove this is to show that when any strpiugged into any Zome ball hole
having coordinates like those above, the coordinates oflleplaeed at the end of the strut will also
have coordinates with the same property. Since the balleabtlyin satisfies the condition (namely
a=>b=c=d=e= f =0)then the condition is preserved as each strut is added tegatial path.

Note: It is possible to purchase special “half blue” and “half gréestruts that are half the length of the
normal ones. If these are allowed in the system, the resldstexcept that the denominator in Equation 2
must be changed fromto 4.

This is true of the red, blue, yellow and green struts, but weonly prove it here for the red, blue and
yellow ones. The proof for the green struts is similar, batréhare five possibilities to consider since a
green strut can be pushed into a pentagonal hole in five diff@rientations. Working out the details for
the green struts is not difficult, but there are five caseg,isamigood exercise to do this.

Figure 5: Yellow Strut

We will demonstrate our result for the red, blue and yellomtstby showing that if a particular strut
of a particular color is put in the Zome ball at the origin, t@ordinates of the center of the ball at
the end of the strut have the correct form. Then, since theabstrut used can have a length that is a
multiple by a power ofr of the particular strut, the coordinates for a differentgigmstrut will simply



be multiplied by some power of. But we have shown that such a multiplication will just yi@ldother
integer combination of andr, so every strut coming out of the origin will yield an endpdiaving the
form shown in equation 2.

Finally, since we will be, in general, placing the strut imtdvall that is not at the origin, but into a ball
whose coordinates have the form shown in equation 2, we ilply be adding coordinates of those
forms, and the resulting ball at the end of the strut will hiagerequired coordinates.

Insert three short blue struts to represent the perperaticalordinate axes and then add three more
opposite them to represent the negative axes. When you egahe Zome ball with these six positive
and negative axes, they divide the ball into eight octards, #ipart from sign and labeling of the axes,
are equivalent. Thus we really need only examine the holéseiizome ball that fall into one octant or
boundary of that octant. A quick look will make it obvioustiraeach octant there is essentially only two
kinds of holes into which a blue strut can be inserted (an axésa non-axis blue hole), two into which
a yellow can be inserted (in one of the planes determined byatves and one making equal angles with
all the axes, and only one for the red struts (again in a platerchined by two of the axes).

We need to show that if we assume that the Zome ball has cadedii, 0, 0) the other end of each of
those five types of struts will have coordinates satisfyingdtion 2.

Figure 6: Blue Struts

First note that if any particular strut satisfies these cibonl, then all struts of the same color inserted
into the same hole will work, since every strut’s length isaavpr of 7 times another strut of the same
color, and we know that multiplying coordinates by a power a&in always be reduced to a value that is
linear in1 andr as we showed in Section 4.

The easiest struts to consider are the blue axial strutd &\&hort blue, the coordinates will always look
something likg(£1, 0,0), (0, £1,0) or (0,0, £1), and these all satisfy the conditions of equation 2.

The red and yellow struts that lie in a plane determined byiagieaxes are also quite easy. In fact,
Figure 3 shows that ¥, strut from the origin has coordinates /2, +7%/2 = (1 + 7)/2, and0 in some
order, depending on the particular pair of axes that detezttie plane

Figure 4 gives a similar argument that tRe struts have coordinateisl /2, £7 and0, in some order.

A yellow strut that makes equal angles with all three axesiess in Figure 5. If you construct it with
three B; axes and thre&; struts as shown, it is clear that the ball in the center of #itow struts has
coordinateg+1/2,+1/2,+1/2).



Finally, the trickiest standard strut turns out to be a blugt $n one of the off-axis holes.

In Figure 6, the coordinate axes are made @f;aa B, and aBs. From the illustration, it is clear that
the central ball, relative to the origin, has coordinatdg2, +7/2, and+72/2 = 4(1 + 7)/2, in some
order.

An interesting consequence of this is that if we had bluetsiruevery length, including/7, 1/72, ...,
and if all we cared about were the locations of the Zome baltké final structure, then there would be
no need for the yellow, red or green balls since simple mowvesria the directions of the coordinate axes
with these blue struts can get us to any ball location redeheding the red, yellow and green struts.



6 Appendix

Relative strut lengths:

In what follows, “HB” stands for “half blue”, “G” for “green’ “HG” for “half green” and “BG” for
“blue-green”.

T = # = 1.618033988749894848204586834
sin 60° = 0.8660254037844386467637231707
sin 72° = 0.9510565162951535721164393333

B =1
BQZT
.8327'2

Y = ‘ég = sin 60°
Y, —T—3 = 78in60°

Y; = 2f_7' sin 60°

Ry = 72¥2E = 724in 72°

HBy =73
HB3 =%
HBy =7
Go = 22
G1 =2
Go =12
HG, = L2
H@_-§
HG3:T %
BG, =1
BGQZT
BG3:T2

Some of the information in this article is based on the welepzdled Analytic Zome:

http://www.rawbw.com/ davidm/zome/
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