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Abstract

This is a beautiful problem that can be used for middle sckaalents and older. On the face of
it, the problem is interesting, but students working on & actually drilling their multiplication and
addition facts.

1 Introduction

This document is meant for the teacher. It describes angstiag problem and then talks about various
ways the problem can be used in a classroom. Depending omy¢heral sophistication of the students,
the classroom discussion can be taken in different direstio

If you are the teacher, probably the best way to use this deotiis first to read the problem in the next
section and before you read on, you should try it yourselfedban idea of how the students might be
thinking and to think about how you might use it in a class. Thead on to see our ideas.

2 TheProblem

Start with a single pile of chips. We will eventually look affdrent sized initial piles, but for now, let's
begin with a pile containing exacti chips.

At each stage, you can choose a pile and split it into two plilesthose two piles do not need to be equal
or even roughly equal. You could divide the initial pile 4f into two piles containing each, or you
could split it into a pile containing and another pile containing onlychip. Continue until all the piles
have sizel which must happen eventually, since piles keep gettinglem#&iut none can contain fewer
than1 chip.

Your score is determined as follows: Your initial score isg&and each time you divide a pile into two,
you add to your score the product of the sizes of the two nesgpil

The result of a sample game is listed below. Each row corredpto a stage in the game where the first
row is the starting position. The column entitled “Pilests the current set of piles, and the pile in bold
face is the one that was chosen to be split. The “Score” collistsmyour running score and indicates
how it is computed, and the “Move” column displays the moa rou make from that position (which
will generate the position at the beginning of the next ronmAve like ‘4 — 3,1” means “split a pile
containingd items into a pile containing and another containing’:



Piles Score Move
10 0] 10—6,4
6,4 0+6x4=24| 6—3,3
3,3,4 24+3%x3=33| 3—2,1
2,1,3,4 33+2x1=35]| 4—2,2
2,1,3,2,2 35+2%x2=39| 2—1,1
2,1,3,1,1,2 39+1x1=40| 21,1
1,1,1,3,1,1,2 40+1x1=41] 3—2,1
1,1,1,2,1,1,1,2 [41+2x1=43]| 2—1,1
1,1,1,2,1,1,1,1,1 [434+1x1=44] 2—1,1
1,1,1,1,1,1,1,1,1,1 | 44+ 1 x 1 =45 | Game over

For this example with 10 chips, how much how much higher aescan you get than 45? What is the
smallest possible score? Can you solve problems with diffienumbers of chips in the initial pile? Are
there general formulas for the best and worst possible s¢bhat can be obtained beginning with a single
pile containingn chips?

3 Classroom Presentation

The students can work on this problem alone or perhaps ingeditwo. It is probably a good idea to
provide each student or team with a stack of chips. Befordwmd out the chips, go through one example
(like the one at the end of the previous section) in detaysptally splitting your pile and keeping a list of
the running scores, at least. You don'’t need to list all thsteg piles, but if you write down something
as simple as3 x 2" to represent a move, you know that the move must have beers, 2 so that if you
were listing the piles, you'd know thatfturned into &3 and a2.

Ask the students to come up with the highest-scoring anddtwaeoring games that they can. After a few
minutes, ask who has a higher or lower score than the one ytan gour sample subdivision. There will
probably be a lot of arithmetic errors, and (as you will sé& €asy to know when an error has occurred,
S0 you can point out the error and have the students re-evihieir score.

Finally, the class should be convinced of the result, and o1 can begin to lead them in explorations
of why the result might be true.

Another question you might pose is this: “How many steps thid game take?”. The answer is that
(starting with10 chips) it will take exactly steps, no matter how the game is played. That’s because you
begin with one pile and each stage generates exactly onepiler&ince the game ends when there are
10 piles, it must last exactly steps. So a game beginning with a single pile@hips will be over after

n — 1 moves.

4 TheResult

What the students should find is that the score is alvesgstly the same. If you begin with10 chips, you
will always have a score af5, no matter how the subdivision is done. In fact, if you begithw chips
in a single pile, the score will always bgn — 1)/2.



Thus if any student or team comes up with a number that idhotou know that at least one arithmetic
error has occurred. Make them show you their calculatioms yau will always find an error.

5 HowtoInvestigatethe Problem

A strategy that works well in situations like this is to intigate similar, simpler problems. You can then
make tables of the results and patterns begin to emerge.ulaghk the students for a simpler problem,
many will suggest a smaller initial pile, but they will prdiig suggest “smaller” numbers likeor 5. Tell
them that it's almost always best to start with the very sesd]leven if it seems totally trivial, since it may
help to find the general pattern. In your class, keep additigisaable as you gather more information,
and don't erase it so that you can always refer back to thdtsasiprevious work.

In this case, first look at the situation where the initiakpilontains only a single chip. The game is
obviously over instantly, with a score of zero (since no subibns are possible, and the only way to add
to your score is to do a subdivision). So you can begin wriirigble on the board that looks something
like this:

Initial Pile Size | Score
1 0

The next simplest game obviously begins with a pile contajgi chips. There is only one move: —
1,1, giving you a grand score dfx 1 = 1, so your table on the blackboard now looks like this:

Initial Pile Size | Score
1 0
2 1

There is no problem with an initial pile size 8f either, since the only possible initial movedis— 2, 1
(fora score of x 1 = 2), after which you need to subdivide the pile contairiritems (adding x 1 =1
to the score), and the total scoreis- 1 = 3.

The first “interesting” position begins with a pile dfchips, and it is interesting because there is more
than one possible mové: — 1,3 or4 — 2,2. After the initial move everything is determined, however,
and it's pretty easy to show that the scoré is either case.

For an initial position withs, again there are two possible movés:— 1,4 and5 — 2,3. As you start
to work on this, point out to the students that if your first mavass — 1,4, they don’t need to work
out the score fod since they already did it for the previous problem. If youibegith 5 — 1, 4, their
final score will include tha x 4 = 4 from this move plus the score obtained by subdividing the thiat
containst items, and they already know that they’ll ggfrom that, yielding a final score d0. Similarly,

if the first move is5 — 2, 3, they get a score df x 3 = 6 for the first move and they simply have to add
on the results from an initial pile of sizZ=(a score oft) and from an initial pile of siz& (a score o8) for
atotal of6 + 1 + 3 = 10. In both cases, the final scorelig, so the table now looks like this:



Initial Pile Size | Score
1 0
2 1
3 3
4 6
5 10

It might be worth working through the next stage with the slheginning with an initial pile o6 since
this time there are three possibilities for the first moge— 1,5, 6 — 2,4 and6 — 3,3. Each value
can be determined in a single step from the previously coetpbuélues, which will be, respectively,
1x54+10=15,2x44+146=15and3 x 3+ 3+ 3 = 15, so the pair(6, 15) can be added to the
table above.

Depending on the sophistication of the class, the list of bermabove may remind them of the triangular
numbers that count the number of items required to make rgieaof different sizes. The figure below
illustrates the first four triangular numbers:

The number of dots to make the triangles above is obviaydly-2 = 3,1+2+3 =6, 1+2+3+4 = 10,
et cetera. These are exactly the same numbers we have irbtair ta

At this point, the class may be willing to bet that the answerdnstant, and if that is the case, why might
the answer be the triangular numbers? Well, look at a verplgsinvay of subdividing piles. Suppose we
start with a pile of6 and do the following subdivision — 1,5,5 — 1,4,4 — 1,3,3 — 1,2 and
finally, 2 — 1, 1. The score will be5 + 4 + 3 + 2 + 1 = 15; obviously a triangular number, and the same
technique will yield a triangular number for any initial gtisn.

Of course we have ngrroved that we always obtain the same number, but we have certaioket at a
lot of examples.

6 Proof Using Mathematical Induction

This isnot the easiest way to solve the problem; that will be presemtegkerction 7, but this method is
probably the first one that would occur to a mathematiciamesit provides a straight-forward, brute-
force solution, assuming you are adept at algebra.

If the class is more advanced and the students know somedbimgt mathematical induction, here is a
straight-forward proof that the answer is constant, antlithéact for an initial pile containing: chips,
the final score will be the triangular numbef — 1)/2. If the class knows nothing about mathematical
induction, skip to the next section for a much more intuifiveof.

In fact, what is required here #rong mathematical induction. Usually a proof by mathematicddiction
proves the result for the simplest case (in our example thidavbe for an initial pile containing chip)



and then shows that if the result is true for the cask of1 chips, it is true for the case @fchips. For
strong induction, we again begin by proving it for thehip case, but to prove it for the case witlchips,
we assume that it is true fail values belowt; not just fork — 1.

In our case, ifn = 1, there is one initial chip and no possible moves, so the fioalesis zero, and if
n = 1, the value ofa(n — 1)/2is 0, so we are done.

Now assume that for every pile of size, wherem < k the score obtained by subdividing that pile in any
order is given by the formula:(m — 1)/2. Suppose that an initial pile containikgchips is subdivided
into m andk — m chips, wheré) < m < k. The score will ben(k — m) added to the scores obtained by
subdividing piles of sizen andk — m. By the induction hypothesis, those subdivisions will glietores

of m(m — 1)/2 and(k — m)(k — m — 1)/2, respectively, no matter how the subdivision is done. Thus
the final score5 for a subdivision that begins with — m, (k — m) is:

m(m — 1) (k—m)(k—m—l).

= I{j—
S=m(k—m)+ 5 + 5

A little algebra yields:
mim—1) (k—m)(k—m—1)

S = mk—m)+ ) + )

g 2m(k —m)+mim—1)+ (k—m)(k—m —1)
N 2

g _ omk —2m2 4+ m?2 —m+k2—-2mk+m?2—k+m
N 2

-k  k(k—1)
§ = g =—g—

The final result is exactly what we expected, and does notrdkpeall on the choice af: for the first
subdivision.

The proof above is rock-solid, but it is a little disappamgtj since it doesn’t really tell us much about
what is going on.

Even for students who have been exposed to mathematicattinduthe proof above may be a little
frightening since there are two variablea:andk, involved. In most examples that students have seen,
there is a single variable such ashat is somehow converted fo+ 1 in the next stage. It is probably
worth looking at what the algreba above says for a specifie ttest you have already checked out. For
example, show how the result fbr= 6 is derived ifm = 2, meaning that the initial pile df = 6 is split
intom = 2 piles andk — m = 4 piles.

In the first line,m(k — m) = 2(4) = 8 is the score obtained from the split. From the earlier iniduct
steps, we know that a pile containing= 2 will add m(m — 1)/2 = 2(1)/2 = 1 to the score and a pile
containing(k — m) = 4 chips will add(k — m)(k —m — 1)/2 = 4(3) /2 = 6 to the score. The resulting
score for this case 8+ 1 + 6 = 15, which is equal td:(k — 1)/2 = 6(5)/2.

10r equivalently, we assume it is true ferand show it is true fok -+ 1.



7 Counting Handshakes

If there arem people in a room, and each shakes hands exactly once with@ver person in the room,
how many total handshakes are there? For a class, you pyolvabt to look at some specific numbers,
rather than just;, but it is pretty easy to see what is going on. Suppose there jpeople. The first one
will have to shakel hands. The second person has already shaken hands withsthedimeeds only
shake hands with thiremaining people, and thus there dre 3 handshakes so far. The third person has
already shaken hands with the first and second, and needake shly2 hands to complete the set. The
fourth person similarly only needs to shake one hand, anthigerson has already done. Thus there
ared + 3 + 2 + 1 = 10 total handshakes, and the same argument will clearly woshtav that forn
people, the number of handshake&is— 1) + (n — 2) + (n — 3) + - - - + 2 + 1, which is the triangular
number whose value is(n — 1)/2 (see Section 8).

Instead of a pile of chips, imagine that we are subdividingide" of people. Initially, the people all
shake hands, but as they do so, they tie a long piece of statwelen the wrists of any pair that has
shaken hands. From the paragraph above, there are obvigusly 1)/2 total strings.

Now divide the group into two piles. There will be a bunch afrgis that run between the two piles, and
to really separate them, we will need to cut all the conngctinings. If there aré people in one pile
andm in the other, there will bé&m strings between the piles (each of theeople will haven strings
connecting him or her to the people in the other pile with whom he or she has shaken hafiblgks you
will need to cutmk strings.

The same reasoning can be applied to any pile subdivisiemumber of strings cut with each subdivision
is equal to the product of the number of people in the two nessbated piles. When subdivision is
completeall the strings are cut, and therefore the total of all the prtionust be the same as the initial
number of stringsn(n — 1)/2.

This completes the proof.

8 Formulafor the Triangular Numbers

In this section we will prove in two different ways that:

n(n/—-l)'

I+243+--+(n-1)= 5

As usual, if you are trying to convince your students, dotdttswith the sum above, but with a concrete
example; say, add the numbers franto 7, the result of which you can easily check by hand 2 +

--- 4+ 7 = 28. (Note that this corresponds to the case- 8, since we are only summing the numbers
fromlton —1).

If the (so far unknown sum) iS, we can write:
S=1+2+3+4+5+6+T7.
Since the order of addition doesn’t matter, we could wsitequally well as:

S=74+6+5+4+3+2+1



If we add the two equations above, we obtain:

S = 1+2+3+44+5+6+7

S = 7+6+5+4+3+2+1

28 = 8+8+8+8+8+8+8=7x8 = 56
25 = 56

S = 56/2=28.

It should be clear that there’s nothing special about ad@dingmbers. IfS is the sum froml ton — 1,
then.S can also be written as the sum fram- 1 to 1 (in reverse order). We can add the two equations
and find thaRsS will consist ofn — 1 copies ofn, so the sum is given by half ef(n — 1):

S=14+2434+---+(n—-2)+(n—-1)=n(n-1)/2. 1)
Note: the usual way that the sum of consecutive integersittewiis as:
1+243+---+(n—1)+n=(mn+1)n/2. 2

We only need to add frommton — 1 (since the first personin a groupoheeds to make — 1 handshakes,
the next persom — 2, and so on). Note that Equation 1 can be obtained from Equatlny substituting
n — 1 forn.

An equally valid proofthat +2+3+---+ (n — 1) = n(n — 1)/2 can be obtained by simply counting
the handshakes we used to visualize the situation in Se¢tidBach person shakes hands with all the
other people, so if there arepeople, each of them shakes hands with 1 people yielding what at first
glance appears to ben — 1) total handshakes. Notice, however, that this double-axhethandshakes:
we counted both the case where John shook Mary’s hand andd¥iapk John’s. Thus(n — 1) counts
each handshake twice, so the actual numbefis— 1)/2.



