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Abstract

This is a beautiful problem that can be used for middle schoolstudents and older. On the face of
it, the problem is interesting, but students working on it are actually drilling their multiplication and
addition facts.

1 Introduction

This document is meant for the teacher. It describes an interesting problem and then talks about various
ways the problem can be used in a classroom. Depending on the age and sophistication of the students,
the classroom discussion can be taken in different directions.

If you are the teacher, probably the best way to use this document is first to read the problem in the next
section and before you read on, you should try it yourself to get an idea of how the students might be
thinking and to think about how you might use it in a class. Then read on to see our ideas.

2 The Problem

Start with a single pile of chips. We will eventually look at different sized initial piles, but for now, let’s
begin with a pile containing exactly10 chips.

At each stage, you can choose a pile and split it into two piles, but those two piles do not need to be equal
or even roughly equal. You could divide the initial pile of10 into two piles containing5 each, or you
could split it into a pile containing9 and another pile containing only1 chip. Continue until all the piles
have size1 which must happen eventually, since piles keep getting smaller, but none can contain fewer
than1 chip.

Your score is determined as follows: Your initial score is zero, and each time you divide a pile into two,
you add to your score the product of the sizes of the two new piles.

The result of a sample game is listed below. Each row corresponds to a stage in the game where the first
row is the starting position. The column entitled “Piles” lists the current set of piles, and the pile in bold
face is the one that was chosen to be split. The “Score” columnlists your running score and indicates
how it is computed, and the “Move” column displays the move that you make from that position (which
will generate the position at the beginning of the next row. Amove like “4 → 3, 1” means “split a pile
containing4 items into a pile containing3 and another containing1”:
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Piles Score Move
10 0 10 → 6, 4
6, 4 0 + 6 × 4 = 24 6 → 3, 3

3, 3, 4 24 + 3 × 3 = 33 3 → 2, 1
2, 1, 3, 4 33 + 2 × 1 = 35 4 → 2, 2

2, 1, 3, 2, 2 35 + 2 × 2 = 39 2 → 1, 1
2, 1, 3, 1, 1, 2 39 + 1 × 1 = 40 2 → 1, 1

1, 1, 1, 3, 1, 1, 2 40 + 1 × 1 = 41 3 → 2, 1
1, 1, 1, 2, 1, 1, 1, 2 41 + 2 × 1 = 43 2 → 1, 1

1, 1, 1, 2, 1, 1, 1, 1, 1 43 + 1 × 1 = 44 2 → 1, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 44 + 1 × 1 = 45 Game over

For this example with 10 chips, how much how much higher a score can you get than 45? What is the
smallest possible score? Can you solve problems with different numbers of chips in the initial pile? Are
there general formulas for the best and worst possible scores that can be obtained beginning with a single
pile containingn chips?

3 Classroom Presentation

The students can work on this problem alone or perhaps in teams of two. It is probably a good idea to
provide each student or team with a stack of chips. Before youhand out the chips, go through one example
(like the one at the end of the previous section) in detail, physically splitting your pile and keeping a list of
the running scores, at least. You don’t need to list all the existing piles, but if you write down something
as simple as “3× 2” to represent a move, you know that the move must have been5 → 3, 2 so that if you
were listing the piles, you’d know that a5 turned into a3 and a2.

Ask the students to come up with the highest-scoring and lowest-scoring games that they can. After a few
minutes, ask who has a higher or lower score than the one you got in your sample subdivision. There will
probably be a lot of arithmetic errors, and (as you will see) it is easy to know when an error has occurred,
so you can point out the error and have the students re-evalute their score.

Finally, the class should be convinced of the result, and then you can begin to lead them in explorations
of why the result might be true.

Another question you might pose is this: “How many steps willthe game take?”. The answer is that
(starting with10 chips) it will take exactly9 steps, no matter how the game is played. That’s because you
begin with one pile and each stage generates exactly one morepile. Since the game ends when there are
10 piles, it must last exactly9 steps. So a game beginning with a single pile ofn chips will be over after
n − 1 moves.

4 The Result

What the students should find is that the score is alwaysexactly the same. If you begin with10 chips, you
will always have a score of45, no matter how the subdivision is done. In fact, if you begin with n chips
in a single pile, the score will always ben(n − 1)/2.
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Thus if any student or team comes up with a number that is not45, you know that at least one arithmetic
error has occurred. Make them show you their calculations, and you will always find an error.

5 How to Investigate the Problem

A strategy that works well in situations like this is to investigate similar, simpler problems. You can then
make tables of the results and patterns begin to emerge. If you ask the students for a simpler problem,
many will suggest a smaller initial pile, but they will probably suggest “smaller” numbers like4 or 5. Tell
them that it’s almost always best to start with the very smallest, even if it seems totally trivial, since it may
help to find the general pattern. In your class, keep adding tothis table as you gather more information,
and don’t erase it so that you can always refer back to the results of previous work.

In this case, first look at the situation where the initial pile contains only a single chip. The game is
obviously over instantly, with a score of zero (since no subdivisions are possible, and the only way to add
to your score is to do a subdivision). So you can begin writinga table on the board that looks something
like this:

Initial Pile Size Score
1 0

The next simplest game obviously begins with a pile containing 2 chips. There is only one move:2 →

1, 1, giving you a grand score of1 × 1 = 1, so your table on the blackboard now looks like this:

Initial Pile Size Score
1 0
2 1

There is no problem with an initial pile size of3, either, since the only possible initial move is3 → 2, 1
(for a score of2×1 = 2), after which you need to subdivide the pile containing2 items (adding1×1 = 1
to the score), and the total score is2 + 1 = 3.

The first “interesting” position begins with a pile of4 chips, and it is interesting because there is more
than one possible move:4 → 1, 3 or 4 → 2, 2. After the initial move everything is determined, however,
and it’s pretty easy to show that the score is6 in either case.

For an initial position with5, again there are two possible moves:5 → 1, 4 and5 → 2, 3. As you start
to work on this, point out to the students that if your first move was5 → 1, 4, they don’t need to work
out the score for4 since they already did it for the previous problem. If you begin with 5 → 1, 4, their
final score will include the1 × 4 = 4 from this move plus the score obtained by subdividing the pile that
contains4 items, and they already know that they’ll get6 from that, yielding a final score of10. Similarly,
if the first move is5 → 2, 3, they get a score of2 × 3 = 6 for the first move and they simply have to add
on the results from an initial pile of size2 (a score of1) and from an initial pile of size3 (a score of3) for
a total of6 + 1 + 3 = 10. In both cases, the final score is10, so the table now looks like this:
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Initial Pile Size Score
1 0
2 1
3 3
4 6
5 10

It might be worth working through the next stage with the class beginning with an initial pile of6 since
this time there are three possibilities for the first move:6 → 1, 5, 6 → 2, 4 and6 → 3, 3. Each value
can be determined in a single step from the previously computed values, which will be, respectively,
1 × 5 + 10 = 15, 2 × 4 + 1 + 6 = 15 and3 × 3 + 3 + 3 = 15, so the pair(6, 15) can be added to the
table above.

Depending on the sophistication of the class, the list of numbers above may remind them of the triangular
numbers that count the number of items required to make a triangle of different sizes. The figure below
illustrates the first four triangular numbers:
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The number of dots to make the triangles above is obviously1, 1+2 = 3, 1+2+3 = 6, 1+2+3+4 = 10,
et cetera. These are exactly the same numbers we have in our table.

At this point, the class may be willing to bet that the answer is constant, and if that is the case, why might
the answer be the triangular numbers? Well, look at a very simple way of subdividing piles. Suppose we
start with a pile of6 and do the following subdivisions:6 → 1, 5, 5 → 1, 4, 4 → 1, 3, 3 → 1, 2 and
finally, 2 → 1, 1. The score will be:5 + 4 + 3 + 2 + 1 = 15; obviously a triangular number, and the same
technique will yield a triangular number for any initial position.

Of course we have notproved that we always obtain the same number, but we have certainly looked at a
lot of examples.

6 Proof Using Mathematical Induction

This is not the easiest way to solve the problem; that will be presented in Section 7, but this method is
probably the first one that would occur to a mathematician, since it provides a straight-forward, brute-
force solution, assuming you are adept at algebra.

If the class is more advanced and the students know somethingabout mathematical induction, here is a
straight-forward proof that the answer is constant, and that in fact for an initial pile containingn chips,
the final score will be the triangular numbern(n − 1)/2. If the class knows nothing about mathematical
induction, skip to the next section for a much more intuitiveproof.

In fact, what is required here isstrong mathematical induction. Usually a proof by mathematical induction
proves the result for the simplest case (in our example this would be for an initial pile containing1 chip)

4



and then shows that if the result is true for the case ofk − 1 chips, it is true for the case ofk chips1. For
strong induction, we again begin by proving it for the1 chip case, but to prove it for the case withk chips,
we assume that it is true forall values belowk; not just fork − 1.

In our case, ifn = 1, there is one initial chip and no possible moves, so the final score is zero, and if
n = 1, the value ofn(n − 1)/2 is 0, so we are done.

Now assume that for every pile of sizem, wherem < k the score obtained by subdividing that pile in any
order is given by the formulam(m − 1)/2. Suppose that an initial pile containingk chips is subdivided
into m andk −m chips, where0 < m < k. The score will bem(k−m) added to the scores obtained by
subdividing piles of sizem andk − m. By the induction hypothesis, those subdivisions will yield scores
of m(m − 1)/2 and(k − m)(k − m − 1)/2, respectively, no matter how the subdivision is done. Thus
the final scoreS for a subdivision that begins withk → m, (k − m) is:

S = m(k − m) +
m(m − 1)

2
+

(k − m)(k − m − 1)

2
.

A little algebra yields:

S = m(k − m) +
m(m − 1)

2
+

(k − m)(k − m − 1)

2

S =
2m(k − m) + m(m − 1) + (k − m)(k − m − 1)

2

S =
2mk − 2m2 + m2

− m + k2
− 2mk + m2

− k + m

2

S =
k2

− k

2
=

k(k − 1)

2
.

The final result is exactly what we expected, and does not depend at all on the choice ofm for the first
subdivision.

The proof above is rock-solid, but it is a little disappointing, since it doesn’t really tell us much about
what is going on.

Even for students who have been exposed to mathematical induction, the proof above may be a little
frightening since there are two variables:m andk, involved. In most examples that students have seen,
there is a single variable such ask that is somehow converted tok + 1 in the next stage. It is probably
worth looking at what the algreba above says for a specific case that you have already checked out. For
example, show how the result fork = 6 is derived ifm = 2, meaning that the initial pile ofk = 6 is split
into m = 2 piles andk − m = 4 piles.

In the first line,m(k − m) = 2(4) = 8 is the score obtained from the split. From the earlier induction
steps, we know that a pile containingm = 2 will add m(m − 1)/2 = 2(1)/2 = 1 to the score and a pile
containing(k − m) = 4 chips will add(k − m)(k −m− 1)/2 = 4(3)/2 = 6 to the score. The resulting
score for this case is8 + 1 + 6 = 15, which is equal tok(k − 1)/2 = 6(5)/2.

1Or equivalently, we assume it is true fork and show it is true fork + 1.
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7 Counting Handshakes

If there arem people in a room, and each shakes hands exactly once with every other person in the room,
how many total handshakes are there? For a class, you probably want to look at some specific numbers,
rather than justn, but it is pretty easy to see what is going on. Suppose there are 5 people. The first one
will have to shake4 hands. The second person has already shaken hands with the first, so needs only
shake hands with the3 remaining people, and thus there are4+3 handshakes so far. The third person has
already shaken hands with the first and second, and needs to shake only2 hands to complete the set. The
fourth person similarly only needs to shake one hand, and thelast person has already done. Thus there
are4 + 3 + 2 + 1 = 10 total handshakes, and the same argument will clearly work toshow that forn
people, the number of handshakes is(n − 1) + (n − 2) + (n − 3) + · · · + 2 + 1, which is the triangular
number whose value isn(n − 1)/2 (see Section 8).

Instead of a pile of chips, imagine that we are subdividing a “pile” of people. Initially, the people all
shake hands, but as they do so, they tie a long piece of string between the wrists of any pair that has
shaken hands. From the paragraph above, there are obviouslyn(n − 1)/2 total strings.

Now divide the group into two piles. There will be a bunch of strings that run between the two piles, and
to really separate them, we will need to cut all the connecting strings. If there arek people in one pile
andm in the other, there will bekm strings between the piles (each of thek people will havem strings
connecting him or her to them people in the other pile with whom he or she has shaken hands).Thus you
will need to cutmk strings.

The same reasoning can be applied to any pile subdivision: the number of strings cut with each subdivision
is equal to the product of the number of people in the two newly-created piles. When subdivision is
complete,all the strings are cut, and therefore the total of all the products must be the same as the initial
number of strings:n(n − 1)/2.

This completes the proof.

8 Formula for the Triangular Numbers

In this section we will prove in two different ways that:

1 + 2 + 3 + · · · + (n − 1) =
n(n − 1)

2
.

As usual, if you are trying to convince your students, don’t start with the sum above, but with a concrete
example; say, add the numbers from1 to 7, the result of which you can easily check by hand:1 + 2 +
· · · + 7 = 28. (Note that this corresponds to the casen = 8, since we are only summing the numbers
from 1 to n − 1).

If the (so far unknown sum) isS, we can write:

S = 1 + 2 + 3 + 4 + 5 + 6 + 7.

Since the order of addition doesn’t matter, we could writeS equally well as:

S = 7 + 6 + 5 + 4 + 3 + 2 + 1.
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If we add the two equations above, we obtain:

S = 1 + 2 + 3 + 4 + 5 + 6 + 7

S = 7 + 6 + 5 + 4 + 3 + 2 + 1

2S = 8 + 8 + 8 + 8 + 8 + 8 + 8 = 7 × 8 = 56

2S = 56

S = 56/2 = 28.

It should be clear that there’s nothing special about adding7 numbers. IfS is the sum from1 to n − 1,
thenS can also be written as the sum fromn − 1 to 1 (in reverse order). We can add the two equations
and find that2S will consist ofn − 1 copies ofn, so the sum is given by half ofn(n − 1):

S = 1 + 2 + 3 + · · · + (n − 2) + (n − 1) = n(n − 1)/2. (1)

Note: the usual way that the sum of consecutive integers is written is as:

1 + 2 + 3 + · · · + (n − 1) + n = (n + 1)n/2. (2)

We only need to add from1 ton−1 (since the first person in a group ofn needs to maken−1 handshakes,
the next personn − 2, and so on). Note that Equation 1 can be obtained from Equation 2 by substituting
n − 1 for n.

An equally valid proof that1 + 2 + 3 + · · ·+ (n− 1) = n(n− 1)/2 can be obtained by simply counting
the handshakes we used to visualize the situation in Section7. Each person shakes hands with all the
other people, so if there aren people, each of them shakes hands withn − 1 people yielding what at first
glance appears to ben(n− 1) total handshakes. Notice, however, that this double-counts the handshakes:
we counted both the case where John shook Mary’s hand and Maryshook John’s. Thusn(n − 1) counts
each handshake twice, so the actual number isn(n − 1)/2.
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