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There are many different areas of mathematics, but the greatmajority can be constructed from “almost
nothing”. We will show here exactly how that is done.

The foundations of almost all of mathematics can be solidly constructed from nothing more than set
theory. One has to be a little careful with what, exactly, is meant by set theory, but it is nice to know that
in a sense, everything can be made to depend on a theory that isso “simple”1.

The topics covered in this paper can easily fill a full semester course at a university, so obviously we are
omitting large amounts of material, and are presenting onlythose topics that lead in a sort of “bee line”
to a fairly simple construction—that of the natural numbers: N = {0, 1, 2, 3, 4, 5, . . .}.

1 Näıve Set Theory

A great deal of set theory can be understood solely based on anintuitive understanding of the subject.
We’ll begin with that and see what we can learn, but we will be careful to notice when and why there are
problems.

Introductory (naı̈ve) set theory basically considers a “set” to be a “collection” of “objects”. For example,
we can think of the set of all elephants, or the set of even numbers, the set of English language sentences,
or the set of all sets. Now of course it is difficult to give a precise mathematical definition of an elephant,
but “the set of all elephants” will cause fewer problems thanone of the others.

But let’s begin without worrying too much about the problems. If we simply consider a set to be a collec-
tion of objects, there are some obvious operations that we might want to perform on sets or combinations
of sets.

1.1 Notation

Although most readers will be familiar with the following, what follows is a quick review of the basic
notions and definitions of (naı̈ve) set theory:

• Set notation. We will indicate a set with a pair of braces: “{” and “}”. {A, B, C} represents the
set containing the three elementsA, B, andC (whateverA, B, andC may be). In cases like this
(relatively small finite sets), it is simple just to list all the elements in a set.

The order in which the elements are listed is unimportant:{A, B, C} = {B, A, C} = {C, B, A},
et cetera. Also, an object is either a member of a set or it is not. A set cannot, for example, contain
two copies of the same object, so{A, A} is just an inefficient way of writing{A}.

1Unfortunately, set theory turns out to be not at all “simple”, but at least it is just a single theory
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When the meaning is obvious, we can even indicate large (or even infinite) sets using a similar
notation. For example, to indicate the set consisting of allthe integers from 1 and 1000000, we
might write: {1, 2, 3, . . . , 1000000}. Or to indicate the set consisting of all the positive multiples
of 3 (an infinite set) we might write:{3, 6, 9, 12, . . .}.

Sometimes it is best to describe the elements of a set in termsof some property that they satisfy.
The following is a description of all the prime numbers:

{x : x is prime}. (1)

You can read the “:” character as “such that”, so that the set in (1) can be read as “the set of allx
such thatx is prime”. Of course, this assumes that you know what is meantby “x is prime”.

• Membership. If you want to indicate that an object is a member (is an element of) a set, use the
symbol∈. Thus we can writex ∈ S, or A ∈ {A, B, C} to mean “x is a member ofS”, or in the
second example, “A is a member of the set{A, B, C}”.

If we want to indicate the opposite (that a particular objectis not a member of a particular set), use
the symbol6∈, so we haveD 6∈ {A, B, C}, and15 6∈ {x : x is prime}.

• Union and intersection. We can indicate the union and intersection of two sets with the symbols
∪ and∩, respectively. IfA andB are two sets, thenA ∪ B indicates the set “A unionB”—the set
that consists of all the elements that are either in setA or in setB. Similarly, A ∩ B is read “A
intersectionB”, which is the set of all elements that are in bothA andB.

For example, ifA = {1, 3, 5, 7, 9} andB = {5, 7, 9, 11, 13}, thenA ∪ B = {1, 3, 5, 7, 9, 11, 13},
andA ∩ B = {5, 7, 9}.

• Set difference. We can “subtract” one set from another using the symbol “−”. If A andB are
sets, thenA − B represents the set consisting of all the elements that are members ofA and are
not members ofB. This is a little different from the subtraction you may be used to in arithmetic,
sinceB may contain elements that are not members ofA. For example, ifA = {1, 2, 3, 4} and
B = {3, 4, 5, 6, . . .}, then even thoughB is an infinite set,A − B still makes sense.A − B =
{1, 2}—the set of all the items that are inA and are not inB.

• Subset, equivalence.If set B contains every element of setA, then we say thatA ⊂ B (read, “A
is a subset ofB”. A ⊂ B is equivalent to: “for everyx, if x ∈ A, thenx ∈ B. We say setsA andB
are equivalent (A = B), if they contain exactly the same elements. The “axiom of extensionality”
that we’ll see later says that ifA ⊂ B andB ⊂ A, thenA = B. Sometimes we writeB ⊃ A to
mean exactly the same thing asA ⊂ B.

1.2 Examples

One very important set is the set with nothing in it. This set is called the “empty set”, and is often denoted
by the Greek letterφ: φ = {}. It is important to realize that the empty set is not “nothing”—it is the set
that contains nothing. If you think of a set as a box, and the elements of a set as the items you find in the
box, then the empty set is like an empty box.

Another important idea is that the objects in a set can be almost anything, including other sets. The set

{A, 1, 7, {8, 9}}
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is a set that contains four objects: it containsA, 1, 7, and a set—the set that contains8 and9.

The set{{}} is also interesting. It is a set with one thing in it, and that thing is the empty set. It isnot
an empty box; it is a box that contains one thing—an empty box.Perhaps this is clearer if we write it in
another way:{φ}.

How many objects does the following set contain?

{A, B, C, {A, B}, B, {B, A}}.

The answer is 4. It containsA, B, C, and the set{A, B}. Note thatB is listed twice in the set, and that
since the order of listing elements is not important,{A, B} = {B, A}, so in effect that member is listed
twice as well.

1.3 Problems with Näıve Set Theory: Russell’s Paradox

For a long time people used the concepts of naı̈ve set theory as listed above in fairly sloppy ways, and
were able to make quite good use of them, but some very nasty problems began to emerge, and getting
rid of those nasty problems turned out to be far more difficultthan anyone expected.

Perhaps the most famous problem is called “Russell’s paradox”, named after Bertrand Russell, the man
who finally showed a way around the problem.

Here’s the basic idea. We’ve seen above that sets may containother sets, and there is no reason that those
sets they contain cannot contain still other sets, and so on.In fact, it might be useful to consider the
set that contains all sets—it would be very large, but it would be useful, too. In fact, since it is a set, it
would contain itself—it is the most obvious example of a set that contains itself, but there are lots of other
examples of sets that contain themselves (in naı̈ve set theory, that is).

So some sets (like the set consisting of all sets) contain themselves, and other sets (like almost all the
other examples in this paper so far) do not contain themselves. A set either contains itself or it does not,
so let’s look at the following interesting setS:

S = {x : x is a set and x 6∈ x}.

In other words,S is the set of all sets that do not contain themselves.

So the obvious question is, doesS contain itself? Suppose it does. Well, then it must not be inS, sinceS
consists of only those sets that do not contain themselves. So S must not contain itself. But then it must
contain itself, sinceS is defined to include all the sets that do contain themselves.So if S contains itself,
then it doesn’t, and if it doesn’t contain itself, then it does. It seems to be a hopeless contradiction.

There are a couple of other paradoxes that are related, but are not stated in such a strict mathematical form
as the paradox above:

• In Seville, there’s a barber who shaves all those people who do not shave themselves. Does the
barber shave himself or not? This is known as the “Barber of Seville problem”.

• Imagine a card. On one side is written, “The statement on the other side of this card is true.” and
on the other side is written, “The statement on the other sideof this card is false.”

Bertrand Russell, one of the most famous logicians ever, struggled with this problem for a long time. In
his autobiography, he describes just how hard he found the problem. Every morning, he said, he would

3



sit down at his desk with a blank piece of paper in front of him.At the end of the day, he would still be
staring at the same blank sheet of paper.

Russell’s final resolution to the problem is described in his“Principia Mathematica”, written with Alfred
North Whitehead, in which he introduced a “Theory of Types” to get around his paradox. The basic idea
was this: sets cannot contain themselves. In fact, one has tobe very careful about exactly what is a set
and what is not a set. Sets can be built up from more primitive objects, but only in a very careful and
controlled way. You cannot just say things like, “Consider the set of all sets.” This is not a set at all, at
least according to Russell.

2 Axiomatic Set Theory

Russell’s “Principia Mathematica” is a difficult read, to say the least. Today we are lucky to have a
much easier to understand method for dealing with set theoryin a way that does not seem to lead to any
contradictions2.

What we’ll do in this section is look at set theory based on a set of axioms, just like the rest of mathematics.
There are various ways to do this, but perhaps the most intuitive is from the so-called Zermelo-Fraenkel
axioms for set theory (sometimes called the “Z-F axioms” forshort).

2.1 Making Language Precise

Since we got into trouble in the first place because of some sloppiness with language, one of the best ways
to begin to study sets is with a precise description of the language that will be used to discuss them.

A natural language—any natural language: English, German,Italian, Russian, Chinese, Arabic, or any-
thing else—has the same basic problem; none was designed specifically for precision, and hence it is easy
to introduce ambiguity using any natural language as a starting point. Of course it’s a lot of trouble to
learn a new language, so the strategy we’ll take in this paperis to show how such a new artificial, precise
language can be put together. Then, rather than force you, the reader, to struggle through the rest of this
paper using it, we will show a couple of examples of its use, but then return to English with the under-
standing that without too much trouble the statements in English can be converted to the more formal
language.

What follows is one possible way to define a language suitablefor talking about mathematics.

2.2 A Formal Language

First, we’ll begin with a description of the sorts of symbolsthat can be used in such a language. Such
symbols fall into the following categories:

• Punctuation. We will use parentheses and commas for various grouping operations. The more
obvious uses will be to indicate the order of operation:(3/6)/7 indicates that 3 is to be divided by
6 first, and the result divided by 7.3/(6/7) means that 6 is to be divided by 7, and then 3 is divided
by the resulting number.

2We can only say “does notseem to lead to contradictions” because nobody knows for certainthat it does not. There is a lot of
evidence that it does not, but (according to another famous theorem of Kurt Gödel) it is impossible to prove that it does not.
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Similarly,F (x) will mean that the function (or predicate)F is applied to the variablex, G(x, y, z)
indicates that the function (or predicate)G is applied to three variables,x, y, andz.

• Variables. We need some way to talk about the objects of interest. In set theory, these objects will
be sets; in number theory, they will be integers; in functional analysis, they will be functions.

For these objects, we will use lower-case letters:a, b, c, . . . . If we need more than 26 of them, we’ll
use subscripts:a1, b17, or z14641, for example.

• Constants. In many fields, it is convenient to give specific names to objects that are extremely
important. They will be used in exactly the same ways as the variables described above, since they
stand for the same things—objects that the language is talking about.

In set theory, for example, we useφ to indicate the empty set. In number theory, we might useN to
indicate the set of natural numbers, andZ for the set of integers.

• Predicates.We will use the term “predicate” to stand for a property that variables may or may not
satisfy. For example, in number theory, we may want to look atnumbers to see if they are prime, or
even, or that two numbers are relatively prime. We could useP (x) to mean thatx is prime;O(x)
to indicate thatx is an odd number, andR(x, y) to indicate thatx andy are relatively prime.

These predicates will have a truth value depending on the values of the variables. Continuing the
example above,P (7) is true,P (9) is false, andR(17, 43) is true.

We will use upper-case letters for predicates likeA, B, C, . . .. As was the case with variables, if we
run out of upper-case letters, we’ll use subscripts:A99, or X451.

There are a couple of predicates that are used so often that they have special symbols:= (equality),
and in set theory:∈ (is a member of). Note that we could useE(x, y) to mean “x is equal toy”, but
we are so used to writingx = y that it seems foolish to add another level of complexity. Similarly,
there could be a predicateM , standing for “member”, and we could writeM(x, s) to mean “x is a
member of the sets”. But x ∈ s is much easier.

• Logical operators. Since the formulas and sentences of our language will generally have truth
values (true or false—T or F ), we need some method to combine truth values. This is done with
logical operators. A variety of these could be used, but herewe’ll stick with the more common and
useful ones:¬ (not),∧ (and),∨ (or),⇒ (implies), and⇔ (is equivalent to).

All but ¬ (the “not” operator), combine two formulas. Not simply reverses the truth value, while
the others have the following “truth tables”, where the values ofA are the column headers and the
values ofB label the rows:

A ∨ B F T
F F T
T T T

A ∧ B F T
F F F
T F T

A ⇒ B F T
F T F
T T T

A ⇔ B F T
F T F
T F T

• Quantifiers. Finally, there are two quantifiers,∃ (there exists) and∀ (for all) that are used together
with a variable to quantify the rest of the sentence.

For example,∀s((¬(s = φ)) ⇒ (∃x(x ∈ s))) is a statement in set theory that can be read, “For
everys, if s is not equal to the empty set (φ), then there exists an objectx such thatx is a member
of s. This statement is true of the theory of sets, but doesn’t even make sense in other fields since
the predicate∈ only makes sense in set theory.
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2.3 Formal Language Grammar

There is, of course, a grammar associated with the language that describes the rules for forming sentences
that are syntactically correct (and whose truth values can be evaluated). We will not specify a complete
set of rules here; we will merely illustrate the general flavor of those rules by means of a small number of
examples:

• ∀x∀y(x = y).

For allx and for ally, x is equal toy. This sentence will only make sense in a system that contains
zero or one objects, but the sentence is correctly formed, and evaluates to a truth value (which is
usually false).

• ∀x(O(x) ∨ E(x)).

For allx eitherO(x) is true orE(x) is true. This is a reasonable and true statement about number
theory, ifO(x) happens to mean that “x is odd”, andE(x) means that “x is even”.

• ∀P∀xP (x).

This is not a legal grammatical construct—the quantifiers can only quantify over variables, not over
predicates.

• ∃s∀x(¬(x ∈ s)).

“There exists ans such that for allx, it is not true thatx is a member ofs.” This is an actual axiom
of set theory, and states the existence of the empty set,φ.

• ∀s∀t(((∀x((x ∈ s) ⇒ (x ∈ t))) ∧ (∀x((x ∈ t) ⇒ (x ∈ s)))) ⇒ (s = t)).

This is another axiom from set theory, the “axiom of extensionality”. It states that ifs is a subset
of t and if t is a subset ofs, thens = t”. But the “subset” operator isn’t part of the language, so we
use a phrase like∀x((x ∈ s) ⇒ (x ∈ t)) to mean thats ⊂ t.

Don’t worry about the formal rules of this grammar—the pointof this section is simply to convince you
that such a formal grammar could be described. If you really want to dig into the details, look in any book
on axiomatic set theory, or on formal logic.

In the sections that follow, we’ll usually include both the formal statement and the (roughly equivalent)
English statement to describe the axioms. But remember thatall the axioms for set theory (and for almost
any other field of mathematics) can be written in the same general way as shown in the valid examples
above.

3 The Zermelo-Fraenkel Axioms of Set Theory

All of set theory can be based on a single predicate,∈.

• The existence of the empty set.
∃s∀x(¬(x ∈ s)).

There is a sets so that for every itemx, x is not ins. In other words,s contains nothing, but the
first “∃s” tells us that the sets itself exists.
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Without too much difference this axiom can be replaced by thesimpler axiom:∃x(x = x) which
simply implies the existence ofsome set.

• The axiom of extensionality.

∀z((z ∈ x ⇔ z ∈ y) ⇒ x = y).

What this axiom states is that if you are given two setsx andy, if every itemz is either in both of
them or in neither or them, thenx andy are the same set. This is sometimes stated as, “ifx is a
subset ofy and ify is a subset ofx, thenx = y.

• The pairing axiom.
∀u∀v∃x∀z((z ∈ x) ⇔ (z = u ∨ z = v)).

This axiom states that given any two objects there is a set that contains exactly those two objects
and no others.

• The subset axioms.
∃y∀x((x ∈ y) ⇔ ((x ∈ z) ∧ A(x))).

There are two strange things about this. First, what is meantby A(x) (after all, the symbolA
wasn’t ever described in our discussion of the grammar), andwhy do we say “axioms” instead of
“axiom”?

The two questions are related. TheA(x) stands forany valid formula in the language that involves
the variablex, and for every possible such formula, there is another axiom. Thus, there are an infi-
nite number of subset axioms. All the axioms have the same form, but different formulas replacing
theA(x). Such a collection of related axioms is often called an “axiom schema”.

The idea behind it simply this: If you already have a set (calledz in the axiom schema above), then
for any description available in the language of a property that some variable may satisfy, the set of
all objects that satisfy that condition make up a set.

For example, if you know that the natural numbersN = {0, 1, 2, 3, . . .} form a valid set (we don’t
know this yet in our formal scheme so far), then for any property that natural numbers might satisfy,
there exists a set of numbers satisfying that property.

To make the example concrete we can show that the set consisting of all even numbers exists.
Simply letA(x) be the following:∃y(y + y = x) (where we assume you know what is meant by
“+”) in arithmetic. ThenA(x) is simply a way to say “x is even”.

• The sum axiom.
∀x∃y∀z∀w((w ∈ z ∧ z ∈ x) ⇒ w ∈ y).

This axiom allows us to form the union of sets. Note that this is an arbitrary union—a union of any
number of sets. In the statement above,x is a collection of sets, andy is the union of all the sets in
x. You can, of course, take the union of two particular sets (say x andy), since the pairing axiom
shows the existence of a setu containing those two sets (u = {x, y}), and this sum axiom will then
let you take the union of all the sets inu, which will amount tox ∪ y.
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• The power set axiom.
∀x∃y∀w(w ⊂ x ⇒ w ∈ y).

In other words, for any setx there is a sety that consists of all the subsets ofx. Notice that the
symbol “⊂” was used above, although it’s not officially part of the language. This is done more and
more frequently, and is valid, since we can replace “w ⊂ x” by “ ∀t(t ∈ w ⇒ t ∈ x)”.

This may seem like an innocent axiom, but it is wildly powerful, and (as we will see later) posits the
existence of huge sets. Even if we begin with a relatively small set consisting of onlyn elements,
that set has2n subsets, so this power set axiom guarantees a set of size2n. If we simply begin with
the empty setφ which has zero elements, the power set ofφ has one element. The power set of the
power set ofφ has 2 elements; another application of the power set gives one with22 = 4 elements,
and if we continue, we have sets of size24 = 16, then216 = 65536, and265536 = a number with
19728 digits.

• The axioms of replacement.

(∀x∀y1∀y2(A(x, y1) ∧ A(x, y2)) ⇒ (y1 = y2)) ⇒ ∀s∃t(∀x∀y((x ∈ s) ∧ A(x, y)) ⇒ y ∈ t).

The formal statement above is probably a bit tricky to understand, but what is says is this. If you
have a sets and a function whose domain is elements ofs, then there is a set that contains the range
of the function. First, notice that this is an axiom schema, sinceA can be any valid formula in the
language.

In the formula above, think of theA(x, y) to mean that the function mapsx to y. Then the part that
says: “∀y1∀y2(A(x, y1)∧A(x, y2))) ⇒ (y1 = y2))” means that ify1 andy2 are both images ofx,
then they must be the same. This is how a function can be definedin this language3.

The second part of the formula says that ifs is a set, then there is a sett that contains everyy such
thatA(x, y) is true for somex in s.

• The axiom of infinity.
∃z(φ ∈ z ∧ ∀u(u ∈ z ⇒ {u} ∈ z).

Again, we’ve been a little sloppy, and have included both thesymbolφ and the set-defining braces
“{” and “}”. Both can be eliminated with a more complicated expression. For example, the “φ ∈ z”
can be replaced by “∃w((w ∈ z) ∧ ∀q¬(q ∈ w))”. Replacing “{u}” is left as an exercise.

What the axiom means is that there exists a set with an infinitenumber of members. We can see that
φ is a member, so the second part tells us that{φ} is also a member. But since{φ} is a member, so
also is{{φ}}. And by similar reasoning, so is{{{φ}}}, {{{{φ}}}}, {{{{{φ}}}}}, and so on.

There are usually two other axioms in Zermelo-Fraenkel set theory, but they are a bit technical, so we will
not discuss them here. They are quite interesting, however,and you may want to look them up. They are
usually called “the axiom of regularity”, and “the axiom of choice”.

3Functions are described in more detail in Section 5.
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4 The Natural Numbers

Finally we have enough set-theoretic machinery to define thenatural numbers solely in terms of sets.
What we mean by the natural numbers is the setN = {0, 1, 2, 3, 4, . . .}. Of course at this point, we have
no idea what the symbols “0”, “1”, “2”, and so on mean. That’s the purpose of this section.

There are lots of ways to do this, but most people have settledon a way that is fairly nice. Before we
present the construction, let’s look at two properties thatmust be satisfied, and also a few properties that
would be very nice:

• Required. The natural numbers must form a set. This is obviously required or we won’t be able to
do much with them.

• Required. Each number must be a set. If not, we’ll have to suppose the existence of something
that’s not a set, and the Z-F axioms do not guarantee the existence of anything other than sets.

• It should be easy to look at the set-theoretic version of a number and figure out what number it is.

• If would be nice if it’s easy to compare the size of numbers by looking at a simple set-theoretic
operation.

• It would be nice if the set corresponding to the natural number n containsn elements. This is
perhaps the most important property, since, as we will see, it is easy to compare the sizes of two
different sets by finding a function that matches them up, so for any other (finite) set we may come
across, we can count the number of elements in it by finding a natural number set that can be
matched with it, element by element.

The infinite set guaranteed by the axiom of infinity would serve as a model for the natural numbers. It
is a set, and all its members are clearly sets. It is also easy to figure out what number it corresponds
to—simply look at the number of nested parentheses. Ifa andb are two such sets, then we know that
a < b, a = b, or a > b if (as sets)a ⊂ b, a = b, or a ⊃ b, respectively.

The only thing wrong with this model is that every set in this version of the natural numbers except zero
will have exactly one element.

But here is a method that does exactly what we want:

1. Let 0 (zero) be the empty set.

2. If we know the set-theoretic representation forn, the representation forn + 1 is n ∪ {n}.

That’s it! But let’s see what this amounts to:

• From the first rule, we know that:
0 = {} = φ.

• Since we now know what 0 is, apply rule 2 to obtain

1 = 0 ∪ {0} = φ ∪ {0} = {0} = {{}} = {0}.

• Since we now know what 1 is, use rule 2 to get 2:

2 = 1 ∪ {1} = {{}} ∪ {{{}}} = {{}, {{}}} = {0, 1}.
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• To get 3:

3 = 2 ∪ {2} = {{}, {{}}} ∪ {{{}, {{}}}} = {{}, {{}}, {{}, {{}}}}= {0, 1, 2}.

• And so on:4 = {0, 1, 2, 3}, 5 = {0, 1, 2, 3, 4}, . . . ,n = {0, 1, 2, . . . , (n − 1)}.

These are, of course, just the numbers. We haven’t given any indication of how addition, multiplication,
et cetera, can be defined in terms of them. For now, take it on faith, and we’ll look at some the machinery
that is used to make such definitions.

5 Functions

Perhaps more important even than the natural numbers (at least from the point of view of mathematics in
general) is the concept of a function.

Recall that a function is a rule that assigns outputs uniquely to inputs. One useful way to think of a
function is as a machine that takes values as inputs and generates an output that depends only on the
input. If the same object is put in twice, the same output willbe generated. (The same output can come
from two inputs—the only requirement is that the same input always generates the same output.)

From your algebra class, you probably recall functions likef(x) = x2, or g(x) = |x| (the absolute value
of x). In the first case, the functionf takes a number as input and multiplies it by itself to make theoutput.
In the second case,g returns the input value as it output if it is positive, and otherwise multiplies it by−1
before returning it.

But what we would like to do is to define a function as a set. In fact, this is just the tip of the iceberg—we
are basically going to define every object and operation in mathematics as a set (That’s of course where
the title of this paper comes from—all of mathematics can be based solely on complicated sets that are
built of nothing but the empty set.). What’s more, we are going to use only “pure” sets that are built up
from nothing but the empty setφ in the same sort of way that we built up the setN of natural numbers.

5.1 Definition of a function

Since we’re going to think in terms of sets, we’d better stop thinking about a function as a machine. The
following is a very set-theoretic way to define a function.

Suppose we know how to make an ordered pair of sets (we’ll see how to do this later). We will write
(x, y) to indicate the ordered pair whose first element isx and whose second element isy. Because it is
an ordered pair, the only time(x, y) = (y, x) is if x happens to be the same asy.

A function is just a set of ordered pairs where the first element of each ordered pair is the input to the
function, and the second is the output. If we restrict the example functionf(x) = x2 above to the natural
numbers, then we can writef as:

f = {(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), . . .}.

Of course not every collection of ordered pairs make a function. For example,{(0, 1), (0, 2)} is not a
function, since such a function would have two different outputs for the same input, 0.
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We can write formally the fact that the setf is a function as follows:

∀v∀w(v ∈ f ∧ w ∈ f ∧ v = (x1, y1) ∧ w = (x2, y2) ∧ x1 = x2) ⇒ y1 = y2.

This simply says that if two ordered pairs are in the same function and they share the first element (the
input to the function), then they have the same output.

5.2 Definition of an ordered pair

Given any two setsx andy, what do we mean by the “ordered pair”(x, y)? We can’t just put them in a
set like this:{x, y}, since{x, y} = {y, x}—there is no ordering implied in a set.

Here is the usual way it is done. Define(x, y) = {{x}, {x, y}}. On the surface, it looks like an ordered
pair is always a set consisting of two sets, but one of those sets contains one object (the first entry in the
ordered pair), and the other contains two objects, and the “other one” is the second element of the ordered
pair.

In the previous paragraph, we said, “on the surface”. This definition is a little deeper than it appears. First,
what represents the ordered pair(x, x)? Well, it is{{x}, {x, x}} = {{x}, {x}} = {{x}}. Is this going
to cause problems? Why not?

Would something like this work? Define(x, y) = {x, {y}}. What’s wrong with this?

Try to think of other possible ways to define an ordered pair, and you’ll find that it is trickier than you
think.

But the bottom line is this: once we do have a good definition for an ordered pair in terms of sets, we can
give a good definition for a function in terms of sets.

5.3 Trivial example of a function

Although it looks simple, and is easy to understand, since everything is built upon the empty set, the
actual representation of more interesting structures can be quite complicated. Here, using what we have
defined above, is the complete listing for a very simple function f that maps0 → 1, 1 → 2, and2 → 3.

First, in terms of ordered pairs, here it is:

f = {(0, 1), (1, 2), (2, 3)}.

Now replace the three ordered pairs by what their set-theoretic equivalent (and we’ll put one on each line
to make it clear what is happening):

f = {
{{0}, {0, 1}},
{{1}, {1, 2}},
{{2}, {2, 3}},
}.

Finally, remember that0, 1, 2, and3 are also sets:

0 = {},
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1 = {{}},
2 = {{}, {{}}}, and

3 = {{}, {{}}, {{}, {{}}}},

so we have:

f = {
{{{}}, {{}, {{}}}},
{{{{}}}, {{{}}, {{}, {{}}}}},
{{{{}, {{}}}}, {{{}, {{}}}, {{}, {{}}, {{}, {{}}}}}}
}.

Or, to write it in a more confusing manner,

f = {{{{}}, {{}, {{}}}}, {{{{}}}, {{{}}, {{}, {{}}}}},
{{{{}, {{}}}}, {{{}, {{}}}, {{}, {{}}, {{}, {{}}}}}}}.

This is truly something from nothing!

6 Functions of two variables

OK, we now know how to define the natural numbers and how to define functions, but what we need is a
method to define operations like addition, multiplication,and so on, so that we can actually do something
interesting with the natural numbers we’ve created.

What does it mean when we write things like “1 + 2 = 3, or “3 × 4 = 12”?

Well, the easiest approach is simply to think of “+” and “×” as functions that map pairs of natural numbers
into other natural numbers. What’s more, we already have a method to describe pairs of numbers—
ordered pairs4. So just define addition and multiplication to be functions that map pairs of numbers into
other numbers. Then “+” and “×” will just be sets, and everything will be copacetic.

Here’s what the beginnings of+ and× would look like:

+ = {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((0, 2), 2), ((1, 1), 2), ((2, 0), 2), ((0, 3), 3), . . .}
× = {((0, 0), 0), ((0, 1), 0), ((1, 0), 0), ((0, 2), 0), ((1, 1), 1), ((2, 0), 0), ((0, 3), 0), . . .}.

7 More complicated structures

We have only defined the natural numbers (and we haven’t even done a very complete job of that—lots
of ideas have been omitted or skimmed). But the same sorts of operations can be used to define more
and more complicated mathematical structures, but all based solely on the empty set and the axioms of
Zermelo-Fraenkel set theory.

4Notice that in the case of addition and multiplication of natural numbers there is no real need to order the pairs sincen + m =

m+n andn×m = m×n, but for operations where the order does make a difference, like subtraction, division, or exponentiation,
the ordering is important
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In this final section, we’ll indicate roughly how such constructions are carried out, but the explanations
will be even skimpier than what was shown above.

7.1 The integers

The natural numbers begin at zero and go up. One problem is that you cannot define the operation of
subtraction on them. After all, what is3 − 4? Without negative numbers, there is no answer, so we need
to somehow add the equivalent of negative numbers to what we already have.

This could be accomplished in a number of crude ways, but here’s the usual way (which is not crude at
all):

First, we’ll consider all possible ordered pairs of naturalnumbers, and we will secretly think to ourselves
that the ordered pair(m, n) represents the integerm − n. If we maken bigger thanm, we’ve got our
negative whole numbers, right?

Well, almost. The problem is that now there are an infinite number of ways to represent each negative
number.−1, for example, can be represented in this way by(0, 1), (1, 2), (2, 3), or even(10000, 10001).
We want to have our setZ of integers to contain only one copy of each, and since(0, 1) 6= (1, 2) we can’t
just pile all the ordered pairs above into a set and call that setZ.

Here’s what’s usually done. All the equivalent ordered pairs are lumped into a so-called “equivalence
class”, which is just a set of ordered pairs that are in some sense, equivalent. So then we can express the
integers as follows:

2 = {(2, 0), (3, 1), (4, 2), (5, 3), . . .}
1 = {(1, 0), (2, 1), (3, 2), (4, 3), . . .}
0 = {(0, 0), (1, 1), (2, 2), (3, 3), . . .}

−1 = {(0, 1), (1, 2), (2, 3), (3, 4), . . .}
−2 = {(0, 2), (1, 3), (2, 4), (3, 5), . . .}

and so on in both directions.

Then we can define addition as follows. Letz1 andz2 be two integers, so each ofz1 andz2 is an infinite set
of ordered pairs of natural numbers as in the examples above.In addition to simply listing the members
of Z, we need to define exactly what is meant by addition, subtraction and multiplication in this new
structure. We assume that we do know how to add and multiply natural numbers.

Obviously, in normal math, we use the same symbols,+ and× to mean multiplication in the natural
numbers and in the integers, but since we have defined those two systems to be very different, the set-
theoretic versions will have to be different, and some theorems need to be proven to show that they
“behave the same way”.

To avoid confusion in what follows, let’s (temporarily) usethe symbols+ and× for the natural numbers,
and we will use⊕ and⊗ for the functions we are trying to define over our newly created integers. We
can also define⊖, which is one of the main reasons we created the integers in the first place.

Suppose that a typical member of the setz1 is (m1, n1), and that a member ofz2 is (m2, n2). To calculate
z1⊕ z2, calculate(m1 +m2, n1 +n2), and then see which equivalence class it lies in among the integers.
Of course we have to do some work to show that it will be in some equivalence class, and that moreover,
if different representatives had been selected fromz1 andz2, that the resulting integer will always lie in
the same equivalence class.
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In a similar way, we can define subtraction. Using the same representatives forz1 andz2, definez1⊖z2 to
be the integer that contains(m1+n2, m2+n1). As with the definition of⊕, we again have to demonstrate
that this definition makes sense.

Finally, multiplication can be done similarly, with similar work required to show that it makes sense. A
typical representative ofz1 ⊗ z2 will be (m1 ×m2 + n1 × n2, m1 × n2 + m2 × n1). It’s a good exercise
to try to figure out why this works.

7.2 The rational numbers

The set of rational numbers (usually calledQ) can be built from the integers in the same general way.
Ordered pairs of integers stand for fractions: the fraction2/3 might be represented by(2, 3) or (4, 6), or
(−2,−3), for example. In the same way that we dealt with alternative representations of integers, we can
define rational numbers to be equivalence classes of orderedpairs of integers.

If q1 is represented by a typical element(n1, d1) andz2 by (n2, d2), thenz1 andz2 will be in the same
equivalence class if and only ifn1 ⊗ d2 = n2 ⊗ d1. Since division by zero always leads to heartache, we
will avoid any ordered pairs where the second element is zero.

Addition, subtraction, multiplication, and now division can be defined for the rationals in the obvious
way, in terms of the operations on the integers. Since we’re running out of characters to represent the
operations, we’ll go back to+, −, ×, and/ for rationals, and we’ll use⊕, ⊗, and⊖ for the integers.

As before, letq1 andq2 have representatives(n1, d1) and(n2, d2). Then here are some typical represen-
tatives of rationals that are the results of the various arithmetic operations:

q1 + q2 : (n1 ⊗ d2 ⊕ n2 ⊗ d1, d1 ⊗ d2)

q1 − q2 : (n1 ⊗ d2 ⊖ n2 ⊗ d1, d1 ⊗ d2)

q1 × q2 : (n1 ⊗ n2, d1 ⊗ d2)

q1/q2 : (n1 ⊗ d2, n2 ⊗ d1)

Note, of course, that forq1/q2 thatn2 had better not be zero.

It’s again a good exercise to see why these definitions work.

7.3 The real numbers

One nice way to make the real numbersR from the rationals is via so-called “Dedekind cuts”. If the entire
setQ is divided into two subsets so that one contains only rationals smaller than those in the other, this
does a perfectly good job of defining the reals. Thus to get

√
2, just split the rationals into all the numbers

less than
√

2 and all those greater. There are some minor complications, but not many.

One complication is that there are two representatives of some reals—if we split at a rational number, that
number can be put into the lower or the upper set with no difference in the result.

7.4 The complex numbers

Finally, the complex numbers can be defined as ordered pairs of real numbers, and there are basically zero
difficulties with this.
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