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There are many different areas of mathematics, but the gragtrity can be constructed from “almost
nothing”. We will show here exactly how that is done.

The foundations of almost all of mathematics can be solidigstructed from nothing more than set
theory. One has to be a little careful with what, exactly, esamt by set theory, but it is nice to know that
in a sense, everything can be made to depend on a theory tuatsanple™.

The topics covered in this paper can easily fill a full senresterse at a university, so obviously we are
omitting large amounts of material, and are presenting thrdge topics that lead in a sort of “bee line”
to a fairly simple construction—that of the natural numbé¥s= {0, 1,2, 3,4,5,...}.

1 Naive Set Theory

A great deal of set theory can be understood solely based amutive understanding of the subject.
We'll begin with that and see what we can learn, but we will Beeful to notice when and why there are
problems.

Introductory (naive) set theory basically considers &"&ebe a “collection” of “objects”. For example,
we can think of the set of all elephants, or the set of even musjlthe set of English language sentences,
or the set of all sets. Now of course it is difficult to give agse mathematical definition of an elephant,
but “the set of all elephants” will cause fewer problems tbaa of the others.

But let’s begin without worrying too much about the probletfisve simply consider a set to be a collec-
tion of objects, there are some obvious operations that watmiant to perform on sets or combinations
of sets.

1.1 Notation

Although most readers will be familiar with the following hat follows is a quick review of the basic
notions and definitions of (naive) set theory:

e Set notation. We will indicate a set with a pair of braces{™and “}". {A, B, C} represents the
set containing the three elements B, andC (whateverA, B, andC may be). In cases like this
(relatively small finite sets), it is simple just to list dfie elements in a set.

The order in which the elements are listed is unimportédt: B,C} = {B, A,C} = {C, B, A},
et cetera. Also, an object is either a member of a set or ittis/eet cannot, for example, contain
two copies of the same object, 6éd, A} is just an inefficient way of writind A}.

1Unfortunately, set theory turns out to be not at all “simplailt at least it is just a single theory



When the meaning is obvious, we can even indicate large @m @finite) sets using a similar
notation. For example, to indicate the set consisting oftedlintegers from 1 and 1000000, we
might write: {1,2,3,...,1000000}. Or to indicate the set consisting of all the positive muétip
of 3 (an infinite set) we might writef3,6,9,12,...}.

Sometimes it is best to describe the elements of a set in tefissme property that they satisfy.
The following is a description of all the prime numbers:

{z : z is prime}. Q)

You can read the “;” character as “such that”, so that thersét) can be read as “the set of all
such thatr is prime”. Of course, this assumes that you know what is miegafit is prime”.

e Membership. If you want to indicate that an object is a member (is an eléro8ra set, use the
symbole. Thus we can writec € S, or A € {A, B,C} to mean % is a member of5”, or in the
second example A is a member of the sét4, B, C'}".

If we want to indicate the opposite (that a particular obigctot a member of a particular set), use
the symbok, so we haveD ¢ {A, B,C}, and15 & {z : z is prime}.

¢ Union and intersection. We can indicate the union and intersection of two sets wighs§rmbols
U andn, respectively. IfA and B are two sets, thed U B indicates the setA union B"—the set
that consists of all the elements that are either inker in setB. Similarly, A N B is read ‘A
intersectionB”, which is the set of all elements that are in betland B.

For example, ifA = {1,3,5,7,9} andB = {5,7,9,11,13},thenAU B = {1,3,5,7,9,11, 13},
andAN B ={5,7,9}.

e Set difference. We can “subtract” one set from another using the symbél “If A and B are
sets, themd — B represents the set consisting of all the elements that anebers of A and are
not members oB3. This is a little different from the subtraction you may bedso in arithmetic,
since B may contain elements that are not memberslofFor example, ifA = {1,2,3,4} and
B = {3,4,5,6,...}, then even thouglB is an infinite set, A — B still makes senseA — B =
{1, 2}—the set of all the items that are ihand are not inB.

e Subset, equivalencelf set B contains every element of sdt then we say thatl C B (read, “A
isasubsetoB”. A C Bisequivalentto: “for every, if z € A, thenx € B. We say setsl andB
are equivalentd = B), if they contain exactly the same elements. The “axiom ¢émsionality”
that we’ll see later says thatd C B andB C A, thenA = B. Sometimes we writd3 D A to
mean exactly the same thing AsC B.

1.2 Examples

One very important set is the set with nothing in it. This setdlled the “empty set”, and is often denoted
by the Greek lettep: ¢ = {}. Itis important to realize that the empty set is not “nothiindt is the set
that contains nothing. If you think of a set as a box, and tbemehts of a set as the items you find in the
box, then the empty set is like an empty box.

Another important idea is that the objects in a set can bestlamything, including other sets. The set

{4,1,7,{8,9}}



is a set that contains four objects: it contaitisl, 7, and a set—the set that contaand9.

The set{{}} is also interesting. It is a set with one thing in it, and thang is the empty set. It inot
an empty box; it is a box that contains one thing—an empty B@thaps this is clearer if we write it in
another way{¢}.

How many objects does the following set contain?

{A,B,C,{A,B},B,{B, A}}.

The answer is 4. It containg, B, C, and the sef A, B}. Note thatB is listed twice in the set, and that
since the order of listing elements is not importdm, B} = { B, A}, so in effect that member is listed
twice as well.

1.3 Problems with Nave Set Theory: Russell's Paradox

For a long time people used the concepts of naive set thedligtad above in fairly sloppy ways, and
were able to make quite good use of them, but some very nagsblgms began to emerge, and getting
rid of those nasty problems turned out to be far more diffithdn anyone expected.

Perhaps the most famous problem is called “Russell’s pafadamed after Bertrand Russell, the man
who finally showed a way around the problem.

Here’s the basic idea. We've seen above that sets may caitansets, and there is no reason that those
sets they contain cannot contain still other sets, and solofiact, it might be useful to consider the
set that contains all sets—it would be very large, but it widué useful, too. In fact, since it is a set, it
would contain itself—it is the most obvious example of a bat tontains itself, but there are lots of other
examples of sets that contain themselves (in naive setytitbat is).

So some sets (like the set consisting of all sets) contaimskéses, and other sets (like almost all the
other examples in this paper so far) do not contain themseAeset either contains itself or it does not,
so let’s look at the following interesting s8t

S={z:zisasetand x & x}.

In other words S is the set of all sets that do not contain themselves.

So the obvious question is, dogsontain itself? Suppose it does. Well, then it must not b&,isinceS
consists of only those sets that do not contain themsehes. 18ust not contain itself. But then it must
contain itself, since is defined to include all the sets that do contain themseesf S contains itself,
then it doesn't, and if it doesn’t contain itself, then it do& seems to be a hopeless contradiction.

There are a couple of other paradoxes that are related,doobastated in such a strict mathematical form
as the paradox above:

e In Seville, there’s a barber who shaves all those people whoad shave themselves. Does the
barber shave himself or not? This is known as the “Barber will8g@roblem”.

e Imagine a card. On one side is written, “The statement on therside of this card is true.” and
on the other side is written, “The statement on the otheraideis card is false.”

Bertrand Russell, one of the most famous logicians everggted with this problem for a long time. In
his autobiography, he describes just how hard he found thiglgm. Every morning, he said, he would



sit down at his desk with a blank piece of paper in front of hwtthe end of the day, he would still be
staring at the same blank sheet of paper.

Russell’s final resolution to the problem is described in"Risncipia Mathematica”, written with Alfred
North Whitehead, in which he introduced a “Theory of Typesyet around his paradox. The basic idea
was this: sets cannot contain themselves. In fact, one hias tery careful about exactly what is a set
and what is not a set. Sets can be built up from more primithjeats, but only in a very careful and
controlled way. You cannot just say things like, “Considez set of all sets.” This is not a set at all, at
least according to Russell.

2 Axiomatic Set Theory

Russell's “Principia Mathematica” is a difficult read, toysthe least. Today we are lucky to have a
much easier to understand method for dealing with set theayway that does not seem to lead to any
contradiction$.

What we’ll do in this section is look at set theory based ortakaxioms, just like the rest of mathematics.
There are various ways to do this, but perhaps the mostiirgt# from the so-called Zermelo-Fraenkel
axioms for set theory (sometimes called the “Z-F axiomssioort).

2.1 Making Language Precise

Since we gotinto trouble in the first place because of sonppsiess with language, one of the best ways
to begin to study sets is with a precise description of thguage that will be used to discuss them.

A natural language—any natural language: English, Gertalign, Russian, Chinese, Arabic, or any-
thing else—has the same basic problem; none was designeficgily for precision, and hence it is easy
to introduce ambiguity using any natural language as airsggpbint. Of course it’s a lot of trouble to
learn a new language, so the strategy we’ll take in this pagershow how such a new artificial, precise
language can be put together. Then, rather than force yeugtder, to struggle through the rest of this
paper using it, we will show a couple of examples of its usé tiven return to English with the under-
standing that without too much trouble the statements inliEmgan be converted to the more formal
language.

What follows is one possible way to define a language suifablglking about mathematics.

2.2 A Formal Language

First, we'll begin with a description of the sorts of symbtist can be used in such a language. Such
symbols fall into the following categories:

e Punctuation. We will use parentheses and commas for various groupingatipes. The more
obvious uses will be to indicate the order of operati(#y:6)/7 indicates that 3 is to be divided by
6 first, and the result divided by 3/(6/7) means that 6 is to be divided by 7, and then 3 is divided
by the resulting number.

2We can only say “does nekem to lead to contradictions” because nobody knows for cettanit does not. There is a lot of
evidence that it does not, but (according to another famuemrém of Kurt Godel) it is impossible to prove that it does n



Similarly, F'(x) will mean that the function (or predicaté)is applied to the variable, G(x, y, z)
indicates that the function (or predicat&)is applied to three variables, y, andz.

Variables. We need some way to talk about the objects of interest. Irhsety, these objects will
be sets; in number theory, they will be integers; in funaiamalysis, they will be functions.

For these objects, we will use lower-case lettetd, ¢, . ... If we need more than 26 of them, we'll
use subscriptsiy, bi7, Or 214641, fOr example.

Constants. In many fields, it is convenient to give specific names to dijéltat are extremely
important. They will be used in exactly the same ways as thieligs described above, since they
stand for the same things—objects that the language isitatithout.

In set theory, for example, we ugdo indicate the empty set. In number theory, we mightiNde
indicate the set of natural numbers, @tbr the set of integers.

Predicates.We will use the term “predicate” to stand for a property thatiables may or may not
satisfy. For example, in number theory, we may want to loakusmbers to see if they are prime, or
even, or that two numbers are relatively prime. We couldRé&e) to mean that: is prime;O(x)

to indicate that: is an odd number, anB(z, y) to indicate thatr andy are relatively prime.

These predicates will have a truth value depending on theesadf the variables. Continuing the
example aboveP(7) is true,P(9) is false, andR(17, 43) is true.

We will use upper-case letters for predicates UikeB, C, . . .. As was the case with variables, if we
run out of upper-case letters, we’'ll use subscriptss, or X 45;.

There are a couple of predicates that are used so often thalhélive special symbols: (equality),
and in set theorye (is a member of). Note that we could uB¢z, y) to mean % is equal tay”, but
we are so used to writing = y that it seems foolish to add another level of complexity. ifgirty,
there could be a predicafd, standing for “member”, and we could wrife (z, s) to mean % is a
member of the sef’. But = € s is much easier.

Logical operators. Since the formulas and sentences of our language will giypérave truth
values (true or false<F or F'), we need some method to combine truth values. This is dotie wi
logical operators. A variety of these could be used, but tver# stick with the more common and
useful ones:= (not), A (and),V (or), = (implies), and= (is equivalent to).

All but — (the “not” operator), combine two formulas. Not simply reses the truth value, while
the others have the following “truth tables”, where the ealof A are the column headers and the
values ofB label the rows:

AvB | F|T ANB | F | T A=B | F | T AeB | F | T
F F\|T F F|F F T | F F T | F
T T\|T T F\|T T T|T T F\|T

Quantifiers. Finally, there are two quantifiers,(there exists) and (for all) that are used together
with a variable to quantify the rest of the sentence.

For exampleys((—(s = ¢)) = (Jz(z € s))) is a statement in set theory that can be read, “For
everys, if s is not equal to the empty sep), then there exists an objectsuch that: is a member

of s. This statement is true of the theory of sets, but doesnt evake sense in other fields since
the predicatec only makes sense in set theory.



2.3 Formal Language Grammar

There is, of course, a grammar associated with the langhagdéscribes the rules for forming sentences
that are syntactically correct (and whose truth values eaevaluated). We will not specify a complete
set of rules here; we will merely illustrate the general ftavithose rules by means of a small number of
examples:

o VaVy(z =y).

For allz and for ally, z is equal tay. This sentence will only make sense in a system that contains
zero or one objects, but the sentence is correctly formed ggaluates to a truth value (which is
usually false).

e V2(O(z) V E(x)).
For all z eitherO(z) is true orE(x) is true. This is a reasonable and true statement about number
theory, ifO(x) happens to mean that is odd”, andE/(xz) means that# is even”.

o VPYzP(x).
This is not a legal grammatical construct—the quantifiersardy quantify over variables, not over
predicates.

o dsVz(—(z € 9)).
“There exists ars such that for allz, it is not true that: is a member of.” This is an actual axiom
of set theory, and states the existence of the emptyset,

o VsVt((Va((z € s) = (xz €t)) A (Vz((z € t) = (z € 5)))) = (s =1)).

This is another axiom from set theory, the “axiom of extenaliy”. It states that ifs is a subset
of t and ift is a subset of, thens = ¢". But the “subset” operator isn’t part of the language, so we
use a phrase likéx((x € s) = (x € t)) to mean thas C ¢.

Don’t worry about the formal rules of this grammar—the paifthis section is simply to convince you
that such a formal grammar could be described. If you readlgtto dig into the details, look in any book
on axiomatic set theory, or on formal logic.

In the sections that follow, we'll usually include both th@hal statement and the (roughly equivalent)
English statement to describe the axioms. But remembeaththie axioms for set theory (and for almost
any other field of mathematics) can be written in the samergémay as shown in the valid examples
above.

3 The Zermelo-Fraenkel Axioms of Set Theory

All of set theory can be based on a single predicate,
e The existence of the empty set.
AsVx(—(z € 3)).

There is a set so that for every itemx, x is not ins. In other wordss contains nothing, but the
first “3s” tells us that the set itself exists.



Without too much difference this axiom can be replaced bysthepler axiom:3z(xz = z) which
simply implies the existence gbme set.

The axiom of extensionality.
Vz((zex e z€y)=>a=y).

What this axiom states is that if you are given two setndy, if every itemz is either in both of
them or in neither or them, thenandy are the same set. This is sometimes stated ag, i%fa
subset ofy and ify is a subset of, thenx = .

The pairing axiom.
YuvvIavz((z € 2) & (z =u V z = v)).

This axiom states that given any two objects there is a sétcth#ains exactly those two objects
and no others.

The subset axioms.
Ve ((z € y) & ((z € 2) A A(x))).

There are two strange things about this. First, what is mbgand(x) (after all, the symbol4d
wasn'’t ever described in our discussion of the grammar) vemgddo we say “axioms” instead of
“axiom”?

The two questions are related. TH€r) stands folany valid formula in the language that involves
the variabler, and for every possible such formula, there is another axidims, there are an infi-

nite number of subset axioms. All the axioms have the sanme,fout different formulas replacing

the A(x). Such a collection of related axioms is often called an “ax&chema”.

The idea behind it simply this: If you already have a set ézhdlin the axiom schema above), then
for any description available in the language of a propédray some variable may satisfy, the set of
all objects that satisfy that condition make up a set.

For example, if you know that the natural numbgrs= {0,1,2, 3, ...} form a valid set (we don't
know this yet in our formal scheme so far), then for any propisat natural numbers might satisfy,
there exists a set of numbers satisfying that property.

To make the example concrete we can show that the set cogsddtiall even numbers exists.
Simply let.A(x) be the following:3y(y + y = z) (where we assume you know what is meant by
“+")in arithmetic. ThenA(z) is simply a way to say# is even”.

The sum axiom.
VeIyVeVw((w € z A z € ) = w € y).

This axiom allows us to form the union of sets. Note that thian arbitrary union—a union of any
number of sets. In the statement abawés a collection of sets, anglis the union of all the sets in

z. You can, of course, take the union of two particular setg gsandy), since the pairing axiom

shows the existence of a setontaining those two sets & {z, y}), and this sum axiom will then

let you take the union of all the setsqin which will amount tox U y.



e The power set axiom.
VedyVw(w C z = w € y).

In other words, for any set there is a sefy that consists of all the subsets:af Notice that the
symbol “C” was used above, although it's not officially part of the laage. This is done more and
more frequently, and is valid, since we can replawec z” by “Vi(t € w =t € z)".

This may seem like an innocent axiom, but it is wildly powéréund (as we will see later) posits the
existence of huge sets. Even if we begin with a relativelylssed consisting of only: elements,
that set hag" subsets, so this power set axiom guarantees a set af'sizbewe simply begin with
the empty sep which has zero elements, the power sep difas one element. The power set of the
power set ofp has 2 elements; another application of the power set givesvith 22 = 4 elements,
and if we continue, we have sets of size= 16, then2'6 = 65536, and25°°36 = a number with
19728 digits.

e The axioms of replacement.

(VaVyr Yy (A(z, y1) A A(z,y2)) = (y1 = y2)) = Vst (VaVy((x € s) AN Az, y)) = y € 1).

The formal statement above is probably a bit tricky to uni@ded, but what is says is this. If you
have a set and a function whose domain is elements,ahen there is a set that contains the range
of the function. First, notice that this is an axiom schemaeA can be any valid formula in the
language.

In the formula above, think of thd(z, y) to mean that the function mapgo y. Then the part that
says: Yy1Vy2(A(z,y1) AN A(x,y2))) = (y1 = y2))” means that ify; andy, are both images aof,
then they must be the same. This is how a function can be defirtbi languagé

The second part of the formula says that i§ a set, then there is a gethat contains every such
thatA(z,y) is true for somer in s.

e The axiom of infinity.
Jz(¢p € z AVu(u € z = {u} € z).

Again, we've been a little sloppy, and have included bothsyrabol¢ and the set-defining braces
“{"and “}". Both can be eliminated with a more complicated expresdian example, the$ € 2"
can be replaced byZw((w € z) A Vg—(q € w))". Replacing {u}" is left as an exercise.

What the axiom means is that there exists a set with an infiniteber of members. We can see that
¢ is a member, so the second part tells us fligtis also a member. But sinde} is a member, so

also is{{¢#}}. And by similar reasoning, so i§{¢}}}, {{{{¢}}}}, {{{{{¢}}}}}, and so on.

There are usually two other axioms in Zermelo-Fraenkelhssiry, but they are a bit technical, so we will
not discuss them here. They are quite interesting, howawdryou may want to look them up. They are
usually called “the axiom of regularity”, and “the axiom dfaice”.

3Functions are described in more detail in Section 5.



4 The Natural Numbers

Finally we have enough set-theoretic machinery to definendtaral numbers solely in terms of sets.
What we mean by the natural numbers is thedset {0, 1,2, 3,4, ...}. Of course at this point, we have
no idea what the symbols “0”, “1”, “2”, and so on mean. Thalt's purpose of this section.

There are lots of ways to do this, but most people have seattiea way that is fairly nice. Before we
present the construction, let's look at two properties thast be satisfied, and also a few properties that
would be very nice:

e Required. The natural numbers must form a set. This is obviously regluir we won'’t be able to
do much with them.

e Required. Each number must be a set. If not, we'll have to suppose ttstezde of something
that’s not a set, and the Z-F axioms do not guarantee theeexistof anything other than sets.

e It should be easy to look at the set-theoretic version of abrrrand figure out what number it is.

o If would be nice if it's easy to compare the size of numbersdnking at a simple set-theoretic
operation.

¢ |t would be nice if the set corresponding to the natural numbeontainsn elements. This is
perhaps the most important property, since, as we will $ég eiasy to compare the sizes of two
different sets by finding a function that matches them uppsaufy other (finite) set we may come
across, we can count the number of elements in it by findingtaralanumber set that can be
matched with it, element by element.

The infinite set guaranteed by the axiom of infinity would geag a model for the natural numbers. It
is a set, and all its members are clearly sets. It is also eafigure out what number it corresponds
to—simply look at the number of nested parentheses. dhdb are two such sets, then we know that
a<b,a="b,0ra>0bif (assetsyp C b, a = b, 0ra O b, respectively.

The only thing wrong with this model is that every set in théssion of the natural numbers except zero
will have exactly one element.

But here is a method that does exactly what we want:

1. Let O (zero) be the empty set.

2. If we know the set-theoretic representationsiothe representation for+ 1 isn U {n}.
That's it! But let’s see what this amounts to:

e From the first rule, we know that:
0={}=0.
e Since we now know what 0 is, apply rule 2 to obtain
1=00{0} =ouU{0} = {0} = {{}} = {0}.
e Since we now know what 1 is, use rule 2 to get 2:

2=10{1} = {{H}u{{{}}} = {}L {3} ={0,1}.



e Toget3:
3=20{2} = {1 {UP U = {H OB = {0, 1,2}

e Andsoon4 ={0,1,2,3},5=1{0,1,2,3,4},...,n={0,1,2,..., (n — 1)}.

These are, of course, just the numbers. We haven't givenratigation of how addition, multiplication,
et cetera, can be defined in terms of them. For now, take ititm &nd we’'ll look at some the machinery
that is used to make such definitions.

5 Functions

Perhaps more important even than the natural numbers &tffeen the point of view of mathematics in
general) is the concept of a function.

Recall that a function is a rule that assigns outputs unijgteinputs. One useful way to think of a
function is as a machine that takes values as inputs and ajesean output that depends only on the
input. If the same object is put in twice, the same output kéllgenerated. (The same output can come
from two inputs—the only requirement is that the same inpuags generates the same output.)

From your algebra class, you probably recall functions fike) = 22, or g(x) = |z| (the absolute value
of ). In the first case, the functightakes a number as input and multiplies it by itself to makeothtput.

In the second case,returns the input value as it output if it is positive, andesthise multiplies it by—1
before returning it.

But what we would like to do is to define a function as a set. &, féis is just the tip of the iceberg—we
are basically going to define every object and operation ithemaatics as a set (That’s of course where
the title of this paper comes from—all of mathematics can &®eld solely on complicated sets that are
built of nothing but the empty set.). What's more, we are gdmuse only “pure” sets that are built up
from nothing but the empty seétin the same sort of way that we built up the Beof natural numbers.

5.1 Definition of a function

Since we're going to think in terms of sets, we’d better stupking about a function as a machine. The
following is a very set-theoretic way to define a function.

Suppose we know how to make an ordered pair of sets (we'll seett do this later). We will write
(z,y) to indicate the ordered pair whose first element end whose second elementjisBecause it is
an ordered pair, the only time:, y) = (y, ) is if  happens to be the sameas

A function is just a set of ordered pairs where the first elenoéreach ordered pair is the input to the
function, and the second is the output. If we restrict thexgxa functionf () = 22 above to the natural
numbers, then we can writeas:

f=1{(0,0),(1,1),(2,4),(3,9), (4,16), (5,25), .. .}.

Of course not every collection of ordered pairs make a fanctiFor example{(0, 1), (0,2)} is not a
function, since such a function would have two differentputs for the same input, 0.

10



We can write formally the fact that the sgis a function as follows:
YoVw(v € fAw € fAv=(z1,y1) ANw = (Z2,y2) A1 = X2) = y1 = Y.

This simply says that if two ordered pairs are in the sametfan@nd they share the first element (the
input to the function), then they have the same output.

5.2 Definition of an ordered pair

Given any two sets andy, what do we mean by the “ordered pair?, y)? We can't just put them in a
set like this:{z, y}, since{z, y} = {y, x}—there is no ordering implied in a set.

Here is the usual way it is done. Defitie,y) = {{z}, {z,y}}. On the surface, it looks like an ordered
pair is always a set consisting of two sets, but one of thosecemtains one object (the first entry in the
ordered pair), and the other contains two objects, and ttet@mne” is the second element of the ordered
pair.

In the previous paragraph, we said, “on the surface”. THisidien is a little deeper than it appears. First,
what represents the ordered pait x)? Well, itis {{z}, {z,2}} = {{«}, {z}} = {{«}}. Is this going

to cause problems? Why not?

Would something like this work? Defire;, y) = {z, {y}}. What’s wrong with this?

Try to think of other possible ways to define an ordered paid you'll find that it is trickier than you
think.

But the bottom line is this: once we do have a good definitiosrafoordered pair in terms of sets, we can
give a good definition for a function in terms of sets.

5.3 Trivial example of a function

Although it looks simple, and is easy to understand, sin@ryking is built upon the empty set, the
actual representation of more interesting structures eaguiite complicated. Here, using what we have
defined above, is the complete listing for a very simple fiomcf that mapg) — 1,1 — 2, and2 — 3.

First, in terms of ordered pairs, here it is:
f={(0,1),(1,2),(2,3)}.

Now replace the three ordered pairs by what their set-ttieaguivalent (and we’ll put one on each line
to make it clear what is happening):

f=A
{{0}, {0, 13},
{13, {1, 23},
{{23,{2,3}},
}.

Finally, remember thdi, 1, 2, and3 are also sets:

0 = {}
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1= {{}}
2 {3, {{}}}, and
{H AU

so we have:

f=A
{3
O G
(OO, A O T
}.

Or, to write it in a more confusing manner,

fo= UL O E O {OH G
{H{ O A GO L L O

This is truly something from nothing!

6 Functions of two variables

OK, we now know how to define the natural numbers and how to ééfinctions, but what we need is a
method to define operations like addition, multiplicatiand so on, so that we can actually do something
interesting with the natural numbers we've created.

What does it mean when we write things like+ 2 = 3, or “3 x 4 = 12"?

Well, the easiest approach is simply to think ef*and “x” as functions that map pairs of natural numbers
into other natural numbers. What's more, we already have thadeto describe pairs of numbers—
ordered pairs So just define addition and multiplication to be functiomattmap pairs of numbers into
other numbers. Thent*” and “x” will just be sets, and everything will be copacetic.

Here’s what the beginnings af and x would look like:

+ = {((0,0),0),((0,1),1),((1,0),1),((0,2),2), ((1,1),2), ((2,0),2), ((0,3),3), ...}
x = {((0,0),0),((0,1),0),((1,0),0), ((0,2),0), ((1,1), 1), ((2,0),0), ((0,3),0), .. .}

7 More complicated structures

We have only defined the natural numbers (and we haven't emea d very complete job of that—lots
of ideas have been omitted or skimmed). But the same sortparfiions can be used to define more
and more complicated mathematical structures, but alldbaskely on the empty set and the axioms of
Zermelo-Fraenkel set theory.

4Notice that in the case of addition and multiplication ofurat numbers there is no real need to order the pairs singen =
m+mn andn X m = m X n, but for operations where the order does make a differeik@eslibtraction, division, or exponentiation,
the ordering is important
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In this final section, we’'ll indicate roughly how such comsttions are carried out, but the explanations
will be even skimpier than what was shown above.

7.1 The integers

The natural numbers begin at zero and go up. One problemtigdacannot define the operation of
subtraction on them. After all, what $s— 4?7 Without negative numbers, there is no answer, so we need
to somehow add the equivalent of negative numbers to whatready have.

This could be accomplished in a number of crude ways, but$ire usual way (which is not crude at
all):

First, we'll consider all possible ordered pairs of natumainbers, and we will secretly think to ourselves
that the ordered paim, n) represents the integet — n. If we maken bigger thanm, we've got our
negative whole numbers, right?

Well, almost. The problem is that now there are an infinite berof ways to represent each negative
number.—1, for example, can be represented in this wayy ), (1,2), (2, 3), or even(10000, 10001).

We want to have our sé& of integers to contain only one copy of each, and sificé) # (1,2) we can't
just pile all the ordered pairs above into a set and call thdf s

Here’s what's usually done. All the equivalent ordered paire lumped into a so-called “equivalence
class”, which is just a set of ordered pairs that are in someeseequivalent. So then we can express the
integers as follows:

2 {(2,0),(3,1),(4,2),(5,3),...}
1 = {(1,0),(2,1),(3,2),(4,3),...}
0 = {(0,0),(1,1),(2,2),(3,3),...}
-1 {(0,1),(1,2),(2,3),(3,4),...}
-2 = {(0,2),(1,3),(2,4),(3,5),...}

and so on in both directions.

Then we can define addition as follows. Letandz, be two integers, so each of andz, is an infinite set
of ordered pairs of natural numbers as in the examples aboadition to simply listing the members
of Z, we need to define exactly what is meant by addition, sulitraetnd multiplication in this new
structure. We assume that we do know how to add and multiglyralbenumbers.

Obviously, in normal math, we use the same symbeglsind x to mean multiplication in the natural
numbers and in the integers, but since we have defined thaseystems to be very different, the set-
theoretic versions will have to be different, and some thew need to be proven to show that they
“behave the same way”.

To avoid confusion in what follows, let’s (temporarily) ude symbolst and x for the natural numbers,
and we will used and® for the functions we are trying to define over our newly crdateegers. We
can also define>, which is one of the main reasons we created the integergifirgt place.

Suppose that a typical member of the sgis (m1, n1), and that a member ef is (m2, n2). To calculate

21 @ z9, calculatem; + ma, n1 +n2), and then see which equivalence class it lies in among tegéns.
Of course we have to do some work to show that it will be in someévalence class, and that moreover,
if different representatives had been selected frgrand zo, that the resulting integer will always lie in
the same equivalence class.
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In a similar way, we can define subtraction. Using the sameesgmtatives fog; andz., definez; © 25 to

be the integer that contaiiis:; +nq, ma+n1). As with the definition ofp, we again have to demonstrate
that this definition makes sense.

Finally, multiplication can be done similarly, with similavork required to show that it makes sense. A
typical representative of, ® zo will be (m; x ma +ny X na, my X n2 +ma X nq). It's a good exercise
to try to figure out why this works.

7.2 The rational numbers

The set of rational numbers (usually call@) can be built from the integers in the same general way.
Ordered pairs of integers stand for fractions: the fracighmight be represented K@, 3) or (4,6), or
(—2,-3), for example. In the same way that we dealt with alternatyesentations of integers, we can
define rational numbers to be equivalence classes of orgeiesiof integers.

If ¢1 is represented by a typical elemént , d;) andzs by (ns, d2), thenz; andze will be in the same
equivalence class if and onlyiif; ® da = no ® dy. Since division by zero always leads to heartache, we
will avoid any ordered pairs where the second element is. zero

Addition, subtraction, multiplication, and now divisiorrt be defined for the rationals in the obvious
way, in terms of the operations on the integers. Since we'nming out of characters to represent the
operations, we'll go back te-, —, x, and/ for rationals, and we’ll use, ®, ando for the integers.

As before, lety; andg, have representativés, d;) and(nz, d2). Then here are some typical represen-
tatives of rationals that are the results of the variousarétic operations:

@1+ g2 (N1 ®@dy ®ne®dy,dy @ dy)
a1 —q2 (n1 ®@dy ©ng @dy,dy ® da)
¢ X g2 (n1 ® na,dy ® da)

q1/q2 (n1 ® da,no @ dy)

Note, of course, that fay; /¢» thatn, had better not be zero.
It's again a good exercise to see why these definitions work.

7.3 The real numbers

One nice way to make the real numbRrfrom the rationals is via so-called “Dedekind cuts”. If theiee
setQ is divided into two subsets so that one contains only rat®saaller than those in the other, this
does a perfectly good job of defining the reals. Thus to,g&tjust split the rationals into all the numbers
less than/2 and all those greater. There are some minor complicatiangdi many.

One complication is that there are two representativesrobseals—if we split at a rational number, that
number can be put into the lower or the upper set with no diffee in the result.

7.4 The complex numbers

Finally, the complex numbers can be defined as ordered faieslmumbers, and there are basically zero
difficulties with this.
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