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Abstract

This article will describe the geometric tool of inversiana circle, and will
demonstrate how it can be used. Proofs of the propertiesrefdion will usually
not be included.

1 Introduction

In this document, some of the mathematics is not absolugdyaus, but can be made
s0. The main purpose of the document is to provide an intudlmout inversion and to
illustrate how the method can be used in many situations eard difficult problems
into simpler ones.

Inversion in a circle is a method to convert geometric figuntés other geometric
figures. It is similar to reflection across a line:

e Any figure can be reflected across a line or inverted in a circle

e Reflecting a figure across the same line twice returns it toriggnal form. The
same is true for inversion in a circle.

¢ Reflection takes points to the other side of the line; inwersakes points to the
“other side” of the circle. In other words points inside aredrted to the outside
and vice-versa.

e There is a fairly easy mathematical relationship betweeguadiand its reflec-
tion or between a figure and its inversion.

e Sometimes it is much easier to work with the reflected versiothe inverted
version of a figure.

There is a simple way to describe how a point can be inverteddincle. If we wish
to invert a more complex figure than a single point, we simpleit every pointin the
figure and the resulting set of points becomes the invertedeig

In this document, we will describe some ways to think abowiision that may not be
mathematically perfect, but they provide some good irdgnitbout inversion that will
usually lead you to correct conclusions.



It turns out that (loosely speaking), “circles” invert tartdes”, but for now we need to
include the quotation marks, since by “circles” we need tdude “special” circles that
have an infinite radius. In other words, we will considerigtiélines to be a special
type of “circle”.

2 Basic Definition of Inversion

In the same way that reflection across a line depends on tkieigar line you choose,
inversion in a circle depends on the particular circle. Tasiddefinition of inversion
of a pointin a circle is simple:

If k& is a circle with cente© and radiug-, and P is any point other tha®, then the
point P’ is the inversion of if:

. g
e P'liesonthe rayOP.
e |OP|-|OP'| =12.

Figure 1: Inversion of a point

Figure 1 shows the inversion of a typical point and how sucloiatpcould be con-
structed with straightedge and compass? I outside the circlé, construct a tangent

line from P to k touchingk at R. Drop the perpendicular frorfi to the rayO_1>D andP’,
the inversion ofP, is at the point of intersection of that perpendicular arelrthy. If
o

P’ is inside the circle do the opposite: construct the perprrdi toO P’ at P’ which
—
intersects the circlé at R. The tangent té at R intersects the ra@) P’ at P.

This figure and the description in the previous paragrapkvstibat inverting a point
twice with respect to the same circle returns the point toritginal position.

To show the relationship of the lengths, silk® P’ R ~ AORP, we have:
|OP'|/|OR| = |OR|/|OP],
and sincgOR| = r, this is equivalent to:

|OP|-|OP'| =%



Notice that if P happens to lie on the circle then the inversion of is the same a®.

3 The “Point at Infinity”

Notice that the using the definition in Section 2 we can ineest point on the plane
other than the poinD itself.

It is easy to see why there is a problem when we try to invertpthiat O. If we
consider points that are very close t@, the length O P| will be tiny, and to satisfy
the equationOP| - |OP'| = r? will require that the lengtHOP’| will have to be
huge. You can also visualize what happens with the geonadristruction displayed
in Figure 1: as the poin®’ moves toward the pointR moves such that the linRP is

o
closer and closer to parallel with the ré&#’. When they are parallel, the intersection
does not exist. It's as if the poit’ moves infinitely far away along the line.

It's a pain that there is a point that cannot be inverted, arelveay out of the problem
mathematically is to decide that we are no longer considesirstandard Euclidean
plane, but rather an extended plane that includes a singiat‘pt infinity” which is
the inversion of the center of the circle. In order that rejpgathe inversion twice
brings every point back to its original position, we simpaygthat the inversion of the
point at infinity though any circle is the center of that aécl

The plane extended in this way has only one point at infinitg i&'s nice to think of
it as a place you approach if you move farther and farther away that reason, it is
useful to think of that point as being on every straight liméhie plane, since every line
eventually gets arbitrarily far from any particular poimt the plane.

If we think about these new “lines” that are the same as thelioés but with an

additional point at infinity, then we can approach that @ddél point by traveling

along that original line in either direction. If we could getthat point and go past
it, it would appear that the line looped around “through iitfthand came back from
infinity from the other direction. Or in other words, thesewlmes behave like loops,
or circles.

So from this point on in this document, when we use the worttlgl with quotation
marks around it, we will always mean either a normal circlthmplane or one of these
lines that has been augmented with the point at infinity sbitbahaves somewhat like
a circle. If there are no quotation marks, we will just mearoamal Euclidean circle.
We will always put the quotation marks around “lines” since will always want to
include that point at infinity.

4 Inversion of “circles”

With this enhanced idea of a “circle”, a key property of irsien is the following: If
every point on a “circle” is inverted through a cirdtethe result will be a “circle”.

The statement above is not hard to prove, but it takes timelreard are lots of cases to



consider, so we will take it on faith, but we will list here serkey results of inversion
with respect to a circlé with centerO, each of which requires a proof that's not
included here:

e Circles completely inside of that do not pass through are inverted to cir-
cles completely outside d@f and vice-versa. Circles that interséchot passing
throughO will invert to circles that also interseétat the same point(s).

e Circles that pass through are inverted to “lines”. If that circle also passes
throughk at two pointsP and@, its inversion will be the “line” passing through
P andqQ. If a circle passes through and is internally tangent &, its inverse
will be the “line” externally tangent té.

e A “line” that passes througly is inverted to itself. Note, of course that the
individual points of the “line” are inverted to other poirds the “line” except
for the two points where it passes through

e Every “line” that does not pass throughis inverted to a circle (no quotes: a
real circle) that passes through

e Two “Circles” that intersect in zero, one, or two places areerted to other
“circles” that intersect in the same number of places. Aelitbre must be taken
to interpret this statement correctly if the intersectiortamgency is aO. For
example, if two circles are tangent@t then their inverses will be two parallel
“lines” (that “meet at infinity”). If a line and a circle arenigent atO, then the
inverse of the circle will be parallel to the line (which isv@rted into itself).

e A “circle” intersecting or tangent t& is inverted to a “circle” intersecting or
tangent tak in exactly the same places or place.

e We can define the angle between two “circles” by finding thdebgtween the
lines tangent to the “circles” at the point of intersecti@f.course if the “circle”
is a line, just consider the tangent line to be the line itsedihgent circles make
an angle of) as to parallel “lines” that “meet at infinity”. Using this deifion,
one final property of inversion is this: if two “circles” meat an angley, then
their inversions also meet at the same angle

For the rest of this document, we will assume without proatt thll the statements
above are true, and we will demonstrate how the tool of inwarsan be applied to
solve a variety of problems.

5 Geometric Constructions

First, note that using the construction illustrated in Feglt we can invert any point
other than the center @&f. So if we wish to invert a circle that does not pass through
O, we can just invert any three points on that circle and coosthe circle passing



through the three inverted points. If the circle does passutih O, invert any two
points on the circle and draw the line passing through therted points, et cetera.

For our first application, consider the problem of consingcthe circle or circles that
pass through two given poinf8 and@ and is tangent to a given linethat does not
pass through botf? and@. If [ passes through one of them, let that ondhend let
Q be the other.

Figure 2: Circle tangent tbthroughP and@

(See Figure 2) Lek be any circle centered & (colored red in the figure) and invert
P andl throughk. The circle (or circles) we are seeking passes thralghhich is
the center ok, so its inversion will be a “line”. The poin® will invert to a new point
P’ (which will not be at infinity, since” and( are different). The liné will invert to
some circle which we’ll calk.

The “line” which is the inversion of the circle(s) we are segkis tangent to< and
passes througR’. If P’ lies onx (meaningP lies onl), then there is one solution: the
tangent tax at P’. Otherwise, there are either two lines throughthat are tangent to
k (the external tangents), or none fif lies insidex). If we invert this line or these
lines (drawn in green) through we obtain the solution(s) which are colored blue in
the figure.

Since this is our first example, let’s look carefully at whatorred in this particular
arrangement. Note the following:

¢ In this example, the liné passes through the circleso its inversiong, also
passes through at the same two points.

e The inversion through a circle of any line is a circle thatgessthrough the
center of the circle of inversion. In this examplgjs the center of the circle of
inversion, and the circle passes throug®.

e SinceP is outside the circlé its inversion,P’, lies inside ofk.

e In this example, the two tangent lines tathrough P’ pass througlt so their
inversions (the blue circles) will pass througlat the exact same points.



Now let's change a few things in the figure and see how thatssffiae solution. For

the first example, see Figure 3, where the only thing that@mgkd is the size of the
circle of inversion. This should result in exactly the samkigons (and you can see
that it does by comparing it to Figure 2)

Figure 3: Circle tangent tbthroughP and@

In the next example (Figure 4), note the differences, but atgice things that are the
same:

e The linel is outsidek, sox is completely insidé:.

e The pointsP and@ have moved relative tbso that one of the solution circles is
now very large. If the line througk andQ@ were parallel td, one of the solution
“circles” would be a line parallel t.

Figure 4: Circle tangent tbthroughP and@

When are there no solutions? For this to ocdefrwould have to lie inside the circle
x and this means thd? and (@ were on opposite sides éfand in that case there are
obviously no solutions.



As a second example, consider a similar problem: constnectitcle (or circles) tan-
gent to two given circleg; andks and passing through a poift If only P were at
infinity, those lines would just be the common tangents tecthaes, right? So all we
need to do is invert everything relative to a cirgléhat is centered a. Then we find
the common tangent lines to the resulting inverted circtes r@-invert them ink to
obtain our solution(s).

Figure 5: Circle throughP tangent tak; andk,

In Figure 5 we see the complete construction. The circle @éngion &) is in red,
the inversions of circles; andks (calledx; andks) are in green. The four common
tangents te:; andkq (both internal and external) are in green, and the four hihetes
are obtained by re-inverting those four lineskinYou can see that all four circles pass
throughP and are tangent tb; andks.

Figure 6: Circle throughlP tangent tak; andk,

If k1 andks intersect, so wilk; andk, so there will be no common internal tangents
and therefore there will be only two solutions. See Figure 6.

In Figure 7 the circlék, is insidek; and there are still four solutions. P is inside



Figure 7: Circle throughP tangent tak; andk,

both or outside both, there will be no solutions.

6 Ptolemy’s Theorem

Ptolemy’s Theorem says that in any cyclic quadrilatet&C D that:
|AC|-|BD| = |AD| - |BC|+ |AB|-|CD,|.

The quadrilateral BC' D is said to be cyclic wherd, B, C andD all lie on the same
circle.

Here is a proof of Ptolemy’s Theorem using inversion in aleirSee Figure 8.

Figure 8: Ptolemy’s Theorem

Let k be a circle centered at and invert all four points on the quadrilatetdBC' D
and the circle upon which they lie with respecttoSince the circle passes through
which is the center of the circle of inversion, the circleli inverted to a straight line



(green in the figure). The point will be inverted to the point at infinity, buB, C and
D will be inverted to pointsB’, C’ andD’, all lying on the (green) line.

By the definition of inversion, we have:
|AD| - |AD'| = |AC| - |AC'| = |AB| - |AB'| =12,
wherer is the radius of the circlé.

We will show thatAABC ~ AAC’'B’. From the equation in the last paragraph, we
have|AB|/|AC| = |AC'|/|AB’| and since/ A is equal to itself, by SAS similarity,
we haveAABC ~ NAAC'B’. Exactly the same argument can be used to show that
ANADC ~ NAC'D'.

By similarity, we have:

|B'C'|  |AB'|
|BC|  |AC|’
Thus: BO| - |AB
B C' = i
B = P
and sincd AB| - |AB’| = r? we have:
1 |BC|'T2
BT = [AC[- [AB| @)

Exactly the same argument shows us that:

L2
R @
and |CD|-r?
|C'D'| = TAC| - [AD] (3)
But B/, C’ andD’ lie on a line, so we know that
|B'D'| = |B'C'| + |C'D'|. (4)

Substituting Equations 1, 2 and 3 into 4, we obtain:

|BD| - r? |BC| - r? |CD| - r?

|AD|-|AB|  |AC|-|AB| = |AC|-|AD|’

and if we multiply through by{|AB| - |AC| - |AD|)/r* we obtain the final result:
|AC|-|BD| = |AD| - |BC|+ |AB|-|CD,|.

By the way, if the quadrilateral inscribed in a circle happém be a rectangle, then
we can use Ptolemy’s theorem (proved above completely lisiegsion) to prove the

Pythagorean theorem, so in a sense, the Pythagorean thearetve proved using
inversion in a circle.



7 Miquel's Theorem

Figure 9: Miquel's theorem

See Figure 9. On the left side of the figure, s BC be an arbitrary triangle and
let D,E and F' be arbitrary points on the line8C, C A and AB, respectively. (In the
diagram those points lie on the segments, but they can asautiside the segments
and the theorem continues to hold.) Miquel's theorem stiiaisthe circles passing
throughAF E, throughBF D and throughC DE are all concurrent at some poibf.

To prove the theorem, consider the diagram on the right afifei@®. Let the circles
passing throughl ' ¥ and BF'D meet at a poinf/ in addition to at point’. We will
show that)M lies on the circleC DE.

Choose an arbitrary circlecentered ab/ and invert all the points ik so thatA inverts
to A’, et cetera. By the properties of inversidit,A’E’ lie on a line, as d&' B’ D’.
Since the pointM/ is inverted to the point at infinity, the point at infinity isvierted
back toM, and since the point at infinity is on all the lines that makehgsides of
the triangles, we know that’ " B’ M, B’ D'C' M and A’ E'C’ M are each a cyclic set
of points. If we can show thdd’, C’ andE’ are collinear, then by re-inverting that line
throughk we will arrive at the circle” E D M which will prove our theorem.

Let/A'F'B' = o, LA'E'C' = fand/B'D’'C’ = +. Since opposite angles in a cyclic
quadrilateral add ta, the angle around poidt/ will be (71 — )+ (7 —8) + (r — ) =
2w, soa + 3+ v = 7. Butif C’ lies on one side or the other &f £’ thena + 3 +
will not equalr, soC’ lies onD’'E’ and we are done.

8 Peaucellier’s Linkage

For many years, it was unknown whether it was possible totoactsa mechanical
linkage that would turn perfect circular motion into petfideear motion. Peaucellier's
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Linkage (see figure 10) shows a linkage that achieves thigarsion.

Figure 10: Peaucellier's Linkage

In the linkage, poinD is fixed on the circle, poin# is constrained to move on the
circle, and segment®C' andOD are two bars of the length while segmentsAC,
CA’, A’D, andDA are four bars of length. The bars are all hooked together with
flexible joints at point®), A, C, A’, andD. (The linesOA’ andCD in the figure are
solely for the proof—they are not part of the linkage.)

We can show that the poiat’ will lie on a straight line if we can show th&A - O A’

is constant. If that is the case, thdrand A’ are inverse points with respect to a circle
centered at). As the pointA moves on a circle that passes throughits inverse,
A’ must move along the inverse of that circle, which is a stridigle sinceO lies on
the circle upon which is constrained to lie. (10 is not on the circleA and A’ will
still be inverse points relative to a circle centeredatbut A’ will merely move on a
different circle asA traces out the first one.

To show this, construct the ling34’ andCD. SinceACA’D is a rhombusCE L
OA’ andE bisectsAA’. Thus we have

OA-OA'=(OE — AE)-(OE + EA')=(OE — AE)-(OE + AE)=0FE? — AE?.

Using the pythagorean theorem M EC and onAOEC, we have

OE*>+ EC? = 0C?*=0?
AE?> + EC? = AC?=r2

Subtracting, we obtain:
OE? — AE? =1 —1? = 0A - OA'.

Sincel? — 2 is constant, so i©A - OA’ and we are done.
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9 The Steiner Porism

We will use inversion in a circle to prove an amazing propeftpairs of circles, one
inside the other.

Figure 11: The Steiner Porism

See Figure 11. Consider two circlés andk,, wherek, lies insidek;, but not nec-
essarily centered inside. If you draw any circle betweerntiteas in the figure, and
then continue to draw a series of circles that are tangehg Bnd k; and also to the
previous circle you drew, one of two things happen. Eitherfthal circle you draw
is also tangent to the original circle (as in the figure) osinbt. The amazing thing
is that if you achieve tangency with some choice of a statingje, you will achieve
tangency with any such choice. Equivalently, if you fail thi&eve tangency with your
first choice, you will never achieve tangency with any otHeavice.

Figure 11 shows an example bf and k; where tangency occurs all the way around
and illustrates two different rings of circles with differtestarting points.

On the other hand, the result is obvious if the two circlescareentric as in Figure 12.
Since the distance between the circles is constant, evarynst position is equiva-
lent to every other starting position since you can justteothe figure to make them
coincide.

We can prove the result by noting that if we do any inversicadiagram like Figure 11
the result will look somewhat the same: two circles with @i other circles between
them. Thus, if we can find, for any two circles likg andk;, an inversion that makes
the images ok, andk; concentric, we will be done, since either the circles betwee
the concentric ones always match up or they never match up.

So all we need to dois find a circle of inversion that takes tubitieary non-intersecting
circles into a pair of concentric ones. This can be done assimFigure 13

Given any two different circles, there is a line called thdical axis such that from
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Figure 12: Concentric Circles

every point on the line, tangents to the two circles havedingesength. In the figure the
green line is the radical axis of circlés andk;. The black line is the line connecting
the centers of those two circles. The radical axis meetsribeof centers ak and by
the definition of the radical axis, the four external tangéndtm R to the two circles
have the same length, so the green circle center&dbaid passing through the tangent
points is perpendicular to both circles.

Let k£ be any circle centered &2, the intersection of that green circle centered?at
and the line connecting the centerskgfandk;. If we invert the two circles irk the
results (the magenta circles) will have to be perpendidoléwo perpendicular lines:
the black line connecting the centers of the circles andrbersion of the green circle.
Circles simultaneously perpendicular to two perpendidiii@s are concentric, so we
are done.

Note: If two circles intersect, it is trivial to find the radical &xi it is just the line
connecting the two points of intersection. In our case, W dircles don’t intersect,
so the problem is a bit more difficult. But since every pairiofles has a radical axis,
if there are three circles, the radical axes of each pair rmgsdt at the same point
called the radical center, and from this one point (which feyat infinity for certain
equal-sized circles), the external tangents to all threxted from this point are equal.

So to find the radical axis of two non-intersecting circles;fprm the following con-
struction twice: draw a circle that intersects the two in flaces, construct their
radical axes, and find their radical center. Each of theseabckenters lies on the radi-
cal axis of the two non-intersecting circles. Connect thath @ line and you have the
radical axis for the original two circles.

13



Figure 13: Inversion to Concentric Circles

10 The Arbelos of Pappus

Figure 14: The Arbelos of Pappus

“Arbelos” is the Greek word for a shoemaker’s knife. In figdeg ignore everything
except for the three circles with diametérs, OB, and AB, whereO, A, andB lie
on the same line, and notice that the area inside the largee eind outside the two
smaller circles is divided into two pieces on the left andhtigeither of these shapes,
which are basically a half-circle with two half-circles rewed, look something like an
arbelos.
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From those original three circles, construct a series ofasron both sides of the circle
with diameterAB as shown in the figure. Each circle is tangent to the circléb wi
diametersOA and OB and also tangent to the previous circle in the series. In the
figure, the centers of those circles on the right are lab€led’, et cetera, and those
on the left have centels_, C_o, ....

We will show that the distance betweéh ; and(; is twice the diameter of the circle
centered at’,, that the distance betwee&r_, and C5 is four times the diameter of
the circle centered &f-, and in general, that the distance betwégén, andC,, is 2n
times the diameter of the circle centered’gt In the figure, this is illustrated far'_3
andCj3 and the circles centered there—exaétlgircles of the same diameter as those
circles can be placed on a straight line between them. Theutdwel between the
circles atC_; andC1, 3 of them between the circles &t_, andC,, et cetera.

The proof is not difficult, and since we have been looking atision and the Steiner
porism, it is clear that the situation here is very simildr.fér example, we can find
an inversion that leaves the circles centere@ ai andC; fixed and at the same time
maps the circles with diamete¢sA andO B into parallel lines, we will be done. The
circles between those centered’at; andCs3, namely those centered@t o, C_1, Cy,
C1, andCs, under inversion will remain tangent to their neighboriirgles, and to the
two parallel lines. Clearly, when we look@t 4, andCy, there will be two more circles
in the chain between them, so they will have two more circtethe line between them.

Figure 15: Proof of the Arbelos Property

It is not hard to find such an inversion. Clearly, it will haweedend the circles with
diameterD A andOB to parallel lines, so the circle of inversion must be certere
O. Figure 15 shows the inversion of the circl@sin such a circle centered &t and
passing through a poirR.

Since the circleg’_; andC; are symmetric relative to the line@ B, as the radius of the

15



circle of inversion centered & increases, it will expand through each pair of opposite
circles in exactly the same way. At some point as it expandsutth each pair, it
will be orthogonal to both and at that point, both of thoseles will be inverted into
themselves.

11 A Four-Circle Problem

Four circles to the kissing come,

The smaller are the better.

The bend is just the inverse of

The distance from the centre.

Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of squares of all four bends
Is half the square of their sum

Frederick Soddy

See figure 16. Given a line, construct a circle tangent toritared at”; with radius

r1. Next, construct a circle tangent to both the line and theleicentered at’;. The
new circle has centef; and radiuss. As shown in the figure, construct the circle
centered at; of radiusrs tangent to both circles and to the line, as shown. Finally,
the circle centered &, of radiusr, = 1 cm is tangent to the first three circles and lies
inside as in the figure. Find the perpendicular distance ftgno the line in terms of
r1, T2, T3, andry, = 1 cm.

C1

Ca C2

3

DA

Figure 16: A Four-Circle Problem

Although at first it does not look like it, this is just a spdaase of the Steiner porism,
but in this case, the outer circle is the “circle” with an inigty large radius—the

straight line. Imagine what would happen if this figure weneerted in a random circle
that was not special in any way (none of the lines or circles phough its center). It
would become the simplest example of a Steiner porism witimaer and outer circle

and three circles filling the ring between them.

If that is the case, it does not matter whatrs, andrs are—the height above the line
will only depend on the radius, = 1 cm.
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C1 B Co
C4

A by

Figure 17: A Four-Circle Problem

So we might as well choose a set of circles with convenientaadn figure 17, where
r =T2.

Using the pythagorean theorem on the right triantylé; BCs we have:

24+ (r—r3)? = (r1+713)?
7‘% + r% —2rirs + r§ = r% + 2ryr3 + r§
r? —d4rirs = 0
ri(r1 —4rs) = 0
ry = A4rs.

Now use the pythagorean theorem again, but this timé&6h BCy:

24 (r = 2r3 —14)? = (r14+74)?
24 (ry =112 —1r4)? = (r1+r4)?
4+ (r /2 —ra)? = (r147m1)?
2424 — g+ = ri 4 2rry 02
r2/4—3rmry = 0
ri(r1 —12ry) = 0
r1 = 12ry4.

Butry = 1cm, sor; = 12cm andrs = 3 cm. The height ofC, above the line is
7 cm.

The solution above seems pretty good, but there is an evésr @agy. See figure 18.
We can invert to a situation where two of the circles becomadgit lines, and the
calculations become even easier. If the radius of the coefgered at’, is 1 and the
unknown equal radii of the other two circles are bothve can see thatsatisfies:

24 (r—17%=(r+1)>2

The solution is* = 4 and from the figure it is clear that the poifif is 7 cm above the
lower line.

17



OC3 C2

Figure 18: A Four-Circle Problem

Note that this problem could also have been solved using #sed@tes circle theorem
presented in the form of a poem at the beginning of this clhajtethis case, one of
the “circles"—the straight line—has infinite radius, so Yided by that radius is zero.

12 Miscellaneous Problems

1. (From BAMO 2008) PointD lies inside the trianglel BC. If Ay, By, andCy
are the second intersection points of the lidd3, BD, andC D with the circles
circumscribed aboubh BDC', ACDA, andAAD B, prove that

AD BD CD

—1.
a4, T BB, T oo,

Figure 19: BAMO 2008 Problem

See Figure 19. The original figure is on the left. To solve thabjem, draw
circle k centered aD having radiud. Invert the pointsA, B, C, A;, B; andC}
with respect tdk, yielding pointsA*, B*, C*, Aj, By andCY, respectively.

Since all three circles pass throughwhich is the center of inversion, the image
of each is a line so the inverse points all lie on the (greeangle A* B*C*.

18



By the definition of inversion, and the fact that the radius:aé 1, we have:
|AD| - |A*D| = 1,|A;D| - |A;D| = 1, and so on.

Consider the first term in the result we are trying to projD|/|AA:|. We
know that|AA;| = |AD| + |DA;| so we obtain:

|AD| _ 1/|A*D| __ 4D AID

|AA,|  1/|A*D|+1/|A{D|  |A*D|+|A;D| — A*A}

Doing the same thing for each of the other quotients in thgirad problem and
doing the substitution, the inequality we are seeking tov@tmecomes:

AiD  BiD CiD

~1.
4 Ve T oo

If by A(AABC') we indicate the area of triangeBC, it is clear from the figure

that:
A1D A(AB*C*D)

A*Ar  A(NA*B*C*)’
and similarly for the other fractions.

Thus our original equality is equivalent to:

ALB*C*D) | A(AA'C*D) | A(DA*B*D)
A(AA*B*C*) ~ A(AA*B*C*) T A(MA*BC¥)

The three triangles whose areas appear in the numeratathéwgnake up the
area of the triangle in the denominator, so the problem igesbl

. Supposeky, ko, k3 and k4 are four circles such thadt; is tangent toks, ks is
tangent toks, k3 is tangent tok,, andk, is tangent tok;. Show that the four
points of tangency lie on a circle or on a straight line. Seadigram on the left
in Figure 20.

Figure 20: Four Tangent Circles
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The proof isn't too hard. Pick any of the tangent points (& ¢ne between
k1 andks and consider a circlé centered at that point. Invert all four circles
k1i,...,kq with respecttd:. Sincek; andk; pass through the center of inversion,
their inverses will be parallel straight lines. The imagéggpandk, will be two
circles tangent to each other and tangent to the paralket liSee the diagram
on the right in Figure 20. It requires only elementary geayntt show that the
three tangent points of the green circles and lines lie iragdtt line, so their
inversion back through will yield either a circle or a straight line.

. Letp be the semiperimeter ah ABC. PointsE and F' are on lineAB such
that| CE| = |CF| = p. Prove that the circumcircle dkCEF is tangent to the
excircle of AABC' with respect to the sidd B. See the diagram on the left of
Figure 21.

Figure 21: Circumcircle-Excircle Tangency

Invert in a circle centered &' and having radiug. This will leave the points
E andF fixed (since they lie on the circle of inversion). It will alssave the
excircle fixed, since it is tangent to the lin€si andC B and those are perpen-
dicular to the circle of inversion. On the other hand, thewincircle of ACEF

is the straight line passing throughand F' since it passes through the center
of inversion. By the definition of the excircld;F' is tangent to it, and thus its
inverse relative to the circle of inversion is also tangernit.t

. (IMO 1985) A circle with cente® passes through pointsandC' and intersects
the sidesAB and BC of AABC at pointsK and N, respectively. The circum-
circles of triangles\ ABC and A K BN meet at distinct point® and}M . Prove
that/OM B = 90°. See the diagram on the left of Figure 22.

Invert through a circlé: centered aB. PointsA’, C’ andM' are collinear and so

areK’, N' andM’, whereasd’C’ N’ K’ lie on a circle. We need to find where
O’ (the image of0) lies. Inversion doesot map the center of a circle to the
center of the inverted circle.

Draw tangents fronB to the circleAC N K, with tangent point$3; andBs. The
Bj{ andBj are the feet of the tangents frakhto the circleA’C’ N’ K’ and since
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Figure 22: IMO 1985 Problem

L lies on the circleBB; B, its image 0, lies on the lineB; By, and in fact is at
the midpoint of that line.

Note thatM’ is on the polar of poinB with respect to the circlel’C'N'K’,
which is the lineB; By. Thus/OBM = /BO'M' = /BO'B}] = 90°.

13 Descartes’ Theorem

Figure 23: Descartes’ Theorem

The following theorem (Descartes’ theorem) is a bit diffi¢ol prove, but it will pro-
vide some very interesting results related to inversiom. Bgure 23. If we have three
mutually-tangent circle§’y, C; andCs having radiirg, r1 andrq, respectively, then
there are two other circles tangent to all three (shown irdtagram ag”; andC%). If
ko = 1/rg, k1 = 1/r andky = 1/r5 then the two solutions faks of the following
quadratic equation are the radii6f andC%:

2(k2 + k2 + k2 4+ k2) = (ko + k1 + ko + k3)2. (5)
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Figure 24: Constructing the tangent circles

Using inversion in a circle, it is fairly easy to construcg ttwo circlesCs andCy. See
Figure 24.

Let O be the point of tangency @f; andC, and letk be the circle of inversion centered
atO. If we invert the three circles, we know th@j andC> must invert to lines since
they pass through the center of inversion. We also know tiase lines are parallel,
since the only place they “meet” is at the imagethfwhich is inverted “to infinity”.
Since( is tangent to botlt; andC; its image must be tangent to their images so it
must invert to a circle that is tangent to the two paralletéiras in the figure. (In the
figure, the images ofy, C; andC, are shown in green.)

The circlesC; andC%, are to be tangent 6, C; andC, so their images must be tan-
gent to the images of those three circles. These are easystraot: they fit between
the two parallel green lines and are tangent to both cirdleshe figure, only one of
those is shown in magenta; the other would be tangent on Her side of the green
circle, so it is below the diagram. If we re-invert those tvicles in the circlek, we
obtainC's andCy.

Descartes’ theorem also holds for circles with “infiniteited, in other words, for
straight lines. This case will correspond to having one efittvalues in Equation 5.
If r is the radius of a circle, the valie = 1/r is often called the curvature. ifis
infinite, the curvature is zero, and that makes sense: @htrie is not curved at all,
and thus has zero curvature. Tiny circles are tightly cuasedi have a large curvature
and vice-versa.

Now we can prove a very interesting result of Descartes'rém@o If we can find four
mutually-tangent circles, each of which has a curvature ihan integer (possibly
zero), then we can choose any three of them and constructditioadl! circle that is
tangent to those three and different from the fourth whico ddas an integer-valued
curvature.

Suppose we begin with four particular valueskpthat satisfy:

2k 4+ k2 4+ k2 + k2) = (ko + k1 + ko + k3)2.
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We can find an additional value fég as follows. We simply need to solve forin the
following quadratic equation:

2(kg + kT + k3 +2°) = (ko + k1 + ko + )2

If we expand the equation above, we obtain:

x2 — 256(]{30 + kl + k2) — 2(]{30/{1 —|— klkg —|— kgko) + k(z) + k% —|— k%

The two roots of this equation add 29k, + k1 + k2), but we know that one of the
roots isks, so the other ig(ko + k1 + k2) — k3. Since all thek; are integers, so must
be the other root.

If we state this in terms of radii instead of curvatures, ihgly means that if all the
radii have the formlL/n, wheren is an integer, then the newly-generated circle will
also have a radius of exactly the same form.

Figure 25: Tangent circles

Figure 25 shows what we can do with repeated inversions tetagst more and more
mutually-tangent circles. We begin with a large circle afivs 1 with two smaller cir-
cles inside having radii/2 each, and two more having radiug3 each. The numbers
in some of the circles in the figure represent the inverseefdlius of that circle. The
initial figure starts with five circles: the outer one and tbarfinside labeled with ei-
ther a2 or a3. We can show that the combination of raflii/1,1/2,1/2,1/3} satisfies
Descartes’ theorem, since:

212+ 22 +22+3%) = (1+2+2+3)%

23



In the equation above, replace one of #'&on each side with am and solve, and we
obtain eitherr = 2 or z = 6, so the new mutually-tangent circle must have radius
(which means that the radiusig6), and so on. Try checking a couple more.

Another application of this yields the so-called Fareyleisc We begin with a straight
line and a series of circles of radiug2 tangent to it and to the next circle. Using
Descartes’ theorem (or in this case, just a simple apptinaif the Pythagorean theo-
rem), we can see that another circle fitting between any pairdes of radiusl and
also tangent to the line will have raditig8. If you use Descartes’ theorem, remember
that the line has curvature zero.

Figure 26: Farey (or Ford) circles

As above, we can repeatedly toss out one circle of a set (matyalkeep the line as
one of the “circles”) and we will generate the Farey circl8ee Figure 26. These are
also called Ford circles.

If we imagine all these circles placed on the plane it turrtdteat for any fractiorp/q
wherep andq are relatively prime, then there is a circle centeretbdy, 1/(24%) and
having radiud /(24?). This is the complete set of the Farey or Ford circles.
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