Hackenbush

Tom Davis
tomrdavis@earthlink.net
http://www.geometer.org/mathcircles
December 15, 2011

Abstract

This article describes the mathematics of the game Redtdegenbush, popularized by Conway, Berlekamp and Guy
([Elwyn R. Berlekamp, 1982], [Conway, 1976]. There are sarotes included about how to use the game in a classroom.

1 The Rules

A Red-Blue Hackenbush position is a collection of pointsreerted by line segments that are colored either red or blue.
Some of the points are on a “ground line”. A segment is coretettd the ground if at least one of its endpoints is on the
ground, or if the segment is connected to another segmenisthannected to the ground. In this article, the ground will
always be a horizontal black line.

There are two players named “Red” and “Blue” who alternateeso Red moves by cutting a red segment and Blue, by
cutting a blue one. The cut segment is deleted together wittother segments that are no longer connected to the ground.

When a player is unable to move (in other words, when it isunis &nd there are no longer any segments of his color), he
loses. In fact, it's useful to add the rule that there is agfar winning, but there is an additional prize for every réamvey
segment of your color when the game ends. Thus it is betteitdya lot.

The mathematical name for a Hackenbush position is “graiphthis case a graph with edges (line segments) colored red
and blue. In fact, any connected graph with one special ntegiound) where all the edges are colored blue or red is
equivalent to a Red-Blue Hackenbush game.

2 Software

Greg Whitehead and Thane Plambek have written a great gadjiiniplementation for the iPad. It's called “HAKENBUSH”
(no “C") and it’s available for free at the Apple store.

I've written C code to play the game on arbitrary positionisvill play either side and will go first or second. There’s pim
documentation inside the code file. Here’s the source:

http://www.geometer.org/puzzles/hack.c

3 A Sample Game

A sample game appears below, and let us assume (now, and stdésd otherwise in this article) that Blue is to make the
first move.



Blue’s first move is to cut the blue segment that connectswidriangular structures on the left part of the diagram. The
result is shown below at the left, and that cut will cause ndy ehat segment to disappear, but also the triangle above it
and the connected loop. It should be easy to follow the suticgeteps to the right as Red and Blue take turns hacking off
segments:
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When Blue cuts his final segment, the game ends and he wirtg (Bi@d has no more moves). Do you see why Red’s last
move was wrong and he could have won by cutting the red segmaealiel to the ground? In addition, there are other non-
optimal moves in this sample game. In fact, as we will be ablealculate later, this particular game, if played optimall
by both players, can always be won by the second player. ker @thrds if Blue moves first, Red wins, and if Red moves
first, Blue wins.

At this point, you may want to play with some simple gamesyddrlearn what you can about Hackenbush before reading
on. If you are a teacher, planning to use this in a classroom,good way to start is to have the class work through the
worksheet that appears as the final two pages of this document

4 Simple Observations

e Ifthe graph is empty (in other words, if there are no edgégn the player whose turn it is to move loses. Remember
that if you cannot move, you lose. This may seem like a trigladervation, but one way to analyze Hackenbush
positions is to consider moves that repeatedly simplifysibgation, and if this method is applied recursively, a very
convenient stopping point for the recursion is when the lgiagmpty.

¢ If some connected portion of the graph that is rooted to tlegigd contains only: edges of a single color then by
cutting those edges in an appropriate order the player ottilar can make: moves on that portion.

e If the red and blue edges do not interact — in other words, tifircy a red edge can never cause a blue one to be
removed and vice-versa, then the result of a game playethalbyi with m such red edges andsuch blue edges
depends only on the value af— m. If n — m is positive, Blue is certain to win. i — m is negative, Red is certain
to win. If it is zero, the second player wins. Why?

e Many Hackenbush positions can be broken up into compondmtsarthe components have no edges or vertices in
common except possibly for the vertex on the ground. If a@l¢bmponents are purely red or blue, we can assign a
value of+n to a component with edges if it is entirely blue andn if it is entirely red. If we add these values for all
the components in a position, then Blue, Red or the secoygipleins, depending on whether that value is positive,
negative or zero.

Although the last item in the list above is a simple obseortihe following is not: it turns out that we can assign nuoar
values to components where the edges do interact, and thhsss\can be added to give the game a value. In this paper, we
will always associate positive values with positions whighge has an advantage and negative ones where the advantage
lies with red. It will turn out in exactly the same way as it diadt solidly-colored components that a position with valeex

(with optimal play by both sides) will always yield a win fdré second player.

Finally, notice that a game can look confusing, like the oelel:



In this game there are no obvious red and blue componeritspalh if you look at the game carefully, assuming that neithe
side makes a stupid move, there is no way for Red to cut off &rgyddges and there is no way for Blue to cut off any red
edges. Thus the value of this game is just the differencesoftimber of blue and red edges, and in this case, that number
is 0.

5 Analyzing Games

In any game that has to end with a winner or a loser (no tiesydredte there are a finite number of possible moves and the
game must end in finite time, there is (theoretically, attle@asnethod to determine the optimal strategy for the players

Let us analyze the following Hackenbush game under thossrgssons:

In this section we assume that Blue makes the first move andinaes are alternated, so there are only 7 possible pasition
(A-G) that can be reached (including the initial position). Hetrey are:
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We can now draw the following complete tree for the game:

D Red wins D Red wins
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D Bluewins

To interpret the graph, begin dton the left. Since it is Blue's move, he can choose to move sitipasB or E, depending
on which edge he cuts. The next move is Red’s, et cetera.

But it's easy to analyize the situation backwards. Blue dussvant to wind up at a node marked “Red wins,” and vice-
versa for Red. Thus if Red is in positid®, he will move toF' to guarantee a win. Since Blue makes the first move from
position 4, it is suicide to move t@7, and although with optimal play by Red he is sure to lose agyatleast if Blue



moves fromA to B there is still a chance to wind up winning.

In a more complex tree, it is probably easier to begin at tiletnost nodes and work your way back, assigning either “Red
wins” or “Blue wins” to each node, working back toward the ivegng.

But in this case, by the analysis above, Red, if he plays cthyrean always win if Blue has the first move. Also, since the
game is obviously symmetric in red and blue, if Red starta Bleie can always force a win.

6 More Observations

¢ If a blue edge is added to any position in any way, the poshieromes better for Blue, and vice-versa.

e Symmetry is often an aid to analyzing a position.

The first observation above is pretty obvious, since you ydweant to have options to move, and having an extra option
thus can't hurt. If you simply ignore the existence of the remlge, you still have all the moves in that position you had
before, and possibly with luck, you can cut the new edge ahdmyather move from the position.

If you can divide a position into two symmetric parts where #tructures are identical, but the colors reversed, theristh
a position where, with good play, the second player can awag. Examples of symmetric positions appear in examples
A andF in the previous section, and as exampleand! in the worksheet at the end of this document.

To see why the second person can always win, simply copy the wicthe first person on the symmetric component, and
since the two parts are identical except with swapped caloese will always be a matching move. Thus there will always
be an even number of moves, and when the moves run out, iteviliéfirst player’s turn, so he will lose.

In the next section, where we will begin to look at the problefnassigning a value to positions, where positions favoring
Blue are assigned positive values and those favoring Regfitive ones, we can see that if two positions are exactly the
same except that all of the colors have been swapped, thealileeof one will be the negative of the value of the other.

7 Some Fractional Games

In this section we will make some convincing arguments foy wartain fractional values can be assigned to certain po-
sitions. We will start with the idea that components of gosi that are made up of entirelyblue segments will have a
value of+n, and if there arex red segments, the value will ben. Consider the following components:
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Componentd is straightforward: Blue has exactly one move, and this camept should be assigned a valuetdf. In all
the other positions, Blue can win whether he starts or nateéch successive position to the right is less desirablBlia
since Red has more and more options. In a position that conéatomponent liké’ above, if Blue needs to make moves
in other components because they are even more criticalh&edp to four “free” moves.

So if the value of component is +1, what values should we assign to componédhts’, D, andE? To find out, consider
the complete position labeldd below:
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It is worthwhile to spend enough time with this game to se¢ithzas value): in other words, with optimal play by both
sides, whoever plays first will lose. That means that some&heviwo copies of positio? above are equivalent to a single
disjoint red segment (with valuel). This means that it might be reasonable to assign a valud ¢ to componens.

Now consider positiortz. The rightmost component @f is the same a®, but with the colors reversed. That means that
its value should probably bel/2. Again (and this is a little more difficult) you can analyzessjtion G and see that it can
always be won by the second player with optimal play by badlesi so the total game has valueThis would mean, of
course, that positiof’ above should probably be assigned the valig4.

Note: It is not too hard to prove that these games are winnable byetbend player. Think about what we said in Section 6
about symmetry.

Another Note: If you were shown a position that somebody claimed had a vaflue3 /4 what would make a convincing
argument that this is true (or false)?

It will also turn out that reasonable values 0y E, et cetera ought to be1/8, +1/16, et cetera. More on this later.

8 Finding a Game’s Value

Let's consider a very simple game:

There are two independent components that are completedydolcompletely red. A totally methodical way to analyze the
game would be to trace the results of every possible cormibmaf moves. For a game this simple, the best moves by each
side are obvious: hack off the uppermost segment each tittieough it would be more inefficient, it wouldn’t hurt to look

at every possible move.

According to our previous discussions, a reasonable valughis game would be3 — 2 = +1 (three blue moves fo#3
and two red moves for2 when added yield-1).

If Blue has to move from this position, the resulting posicave values df, —1 and—2. If instead it is Red's move,
the resulting games would have valuestdf and+3. Remember that when Red makes a cut, the situation is alwassew
for him, since he now has fewer options, so the game valuesase (become better for Blue). Similarly, any Blue move
makes the situation worse for him (and better for Red), sg#mee value decreases (which is what Red wants).

The true value of the game must therefore be larger than algime values after Blue moves, but smaller than all the
game values after Red moves. In fact, suppose the game \&taea Blue move ar®;, B, ... B,, (assuming Blue has
possible moves) and the values after a Red moveéiaré,, . . . R,, (assuming that Red has possible moves). The true
game valud” must be larger than all thB; and smaller than all of th&;. We will indicate this as follows:

V ={Bi,Bs,...,By|R1,Ra,...,Rp}.

(This doesn't tell us how to calculaié; it simply is how we will write that value in terms of th; and R;.)



For the sample game above, there are three possible Bluesrandewo possible Red moves with the values stated above,
and we can write the value of the game as:
{-2,-1,0(2,3}.

The game value will be a number that lies above all the Blugeraeated values on the left and below all the Red-move-
created values on the right. We can ignore the “bad” movesdrdat really concerns us are the largest value on the left
and the smallest value on the right:

{—2,-1,0[2,3} = {0[2}.

In fact, the value of the game is the “simplest” number thed between the largest number on the left and the smallest
number on the right. In the case of the game we're considgnagieed the simplest number betw®eand+2, which is
“obviously” +1.

Let's look at one more example: the game labélBgin Section 7. We decided in that section that a reasonahle vaight

be +1/2, since combining two of them with a1 game seemed to make a zero game where the second player ¢ould w
with an optimal strategy, but let’s try to see what the “siegplrule” would do for us. In that game, there is only one move
available to each player. If Blue moves, everything is cleapaway, yielding a position with value Red’s only move
leaves a single blue segment yielding a position with valu&he value of that game/(|1}) should thus be the simplest
number betweefi and1, and+1/2 is not a bad candidate.

Finally, we have to be able to calculate values of games wheeeof the players has no moves. For example, suppose the
position has exactly two blue segments, so Red has no maveB]le can create a position with valuesf or 0. Our
notation for the value of this game would be:

{0, +1] },

and the best way to interpret this is as “the simplest numdogel than+1, which would be+-2. In the opposite game
where there are initially two red and no blue segments, Bagerto moves, but Red can moveitor —1. Similarly, we'd
be looking for the simplest number smaller thaih, and a good case can be made-far.

Finally, the value of the empty gamefis } (no moves available for either side), and so we're seekiagdimplest number”,
for which zero is a pretty reasonable choice.

With these observations, the valueanly Hackenbush position can be calculated, as long as you'va gobd idea of what
is meant by the “simplest” number.

9 Surreal Numbers

Note: In this tiny section there is no time to completely prove etlemost basic theorems about the surreal numbers. It
will turn out, for example, that there are an infinite numbieways to represent each one, but that every one of those ways
will behave in a reasonable way when calculations are matteitwiThis should not be surprising: the same thing happens
in classic rational numbers:;/2 = 2/4 = 3/6 = 4/8 = -- -, for example. Another missing theorem we will have is that
when a surreal number corresponds to a standard rationddenand all of them will, here), then the surreal number sum
is the same as the rational number sum, and the game reedsrhe combination of two components having valdgs
andV; will have a value ofl; + V5.

The search for simple numbers will use a (tiny) subset of theadled “Surreal Numbers” from Conway ([Conway, 1976])
and popularized by Knuth ([Knuth, 1974]) in his book of theneename. The idea is this: imagine that we start with nothing
at generation zero, and in each generation, we producessilge divisions of the numbers we already have, presented i
the game notation, where all the numbers on the left are entaln all the numbers on the right.

In generation zero, all we have is this:

{1}

which we will call 0.



In generation 1, we now have these additional possibilities

{ 10} and {0] }.

We thus seek the simplest number smaller thamd the simplest number larger than zero, so in generatioe Bdd the
numbers—1 and-+1.

For this article, we are only going to work with finite sets ofmbers, so when we seek new numbers we only need to look
for them between numbers we already have. Thus in geneitioa’ll have to add these:

{|=1},{-1/0},{0[1}, and {1] }.

These will be the numbers:2, —1/2, 4+1/2 and+2.
The next generation will yield:

—3,-3/2,-3/4,—1/4,+1/4, +3/4,+3/2and + 3.

The number-3/4 is the simplest one betweerl and—1/2, and so on.

0
-1 0 +1
—2 -1 -1 0 +3 +1 +2
-3 -2 -3 -1 -3 -1 -2 0 +1 43 43 41 +3 +2 43

5 1 3 1 1 1 1 3 1 5 3 7 5 3 7 5
sd-s- Ll lotlalad il 443+ 142434314

The top line in the illustration above shows all the numb&ed &ire created in generation 0. The next line, includes all
the generation O numbers, but the newly-introduced (g¢ioerd) numbers are drawn in red. The next line shows all the
numbers that exist in generation 2, but again, with the némtlpduced numbers in red, and so on.

Among a set of numbers, we define the simplest one to be the enuwitich appeared in the earliest generation. Thus,
for example, the simplest number betwegety/8 and+3/4 is +1/2. Similarly, the simplest number between any negative
number and any positive number(igzero). When you are looking for the simplest number, remamttat it may have
occurred much earlier in the generations than the numberasmlooking at. For example, if you have the numbgs /4,

its value is1 /2. The knee-jerk reaction is to take the average ahd3/4, or 3/8, which is wrong.

Note that if we let this process go on forever, we will eveityuabtain all rational numbers, positive and negativet tieve
a power of2 in the denominator. For the Red-Blue Hackenbush game, #resal the numbers that are required.

Here are a couple of examples of the fact mentioned in thepfstgraph of this section; namely, wildly-different regen-
tations of the same number:

0 = {|}={-17/64]47/128} = {—1/1024|1000000} = - - -
1 {0] } ={1/2|9/8} = {1/16/1000000} = - - -
1/8 = {0[1/4) = {1/64[3/8} = - -

9.1 The rest of the surreal numbers

This subsection is not important to learning about Hackshpbut the true surreal numbers are fascinating. Here are a
couple more comments about them.



The true surreal numbers are constructed by continuingten ‘@foing on forever.” The “next” generation after that il
give all the real numbers plus a sort of positive and negatiiugity. For examples will be generated by this numbéz. (s
the set of integers):

{m/2" :m,neZAm/n<zmim/2" :m,n€ZAm/n>r},

and the infinities (called and—w) are generated by:

w = {m:meZl}
—w = {|m:meZ}

In other wordsw is the “simplest” number larger than all the integers, andis the simplest one smaller than all of them.
We can also obtain in this step infinitely small numbers;:like

1/w={0]1/n:n>0An€Z},

(in other words the number smaller than all positive fratsidout bigger than zero).
In the next generation, we'll obtain stuff liket + 1, w — 1, 1 /2w, 7 + 1/w, et cetera.

10 Calculating a Game Value

In this section, although it will be, perhaps, a bit boring, will show how the rule in the previous sections allow us tokvo
out the value of any Hackenbush game. We will work with thigraple:

(A

Beginning with this game, the pair of games on the left shdwhal possibilities of positions that can be obtained with a
Blue move, and all the ones on the right are the possibilifts a Red move.

7o
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From previous work, we know the game values of all the compte@bove except for the tower or alternating coldss,
and a similar listing of all the moves possible from that aderftical games are assigned the same label, so all the empty

games, for example, are calleR)):
) (B)

(© (E (F) (F)
We know that the values ¢t”), (D), (E) and(F) are, respectively-1/2,+1/4,0 and+1, so we can find the value @:

(B) = {+1/2,0]+ 1, +1},



and the simplest number in that range+3/4.
Now that we know the value dfB), we can obtain the value ¢fd) as follows:

(A) = {+1/4,0| + 3/4,+1/2},

which will yield: (A4) = +3/8.
While this method for calculating a game value is concepisainple, the number of sub-games that need to be analyzed
can be enormous. For example, if the following game is cotapl@nalyzed, 31,168,746 positions occur:

YAVAVAN

11 Stalks, Trees and Loops

11.1 Stalks and Trees

A “tree” is a connected position where there is a unique patimfany node to the “ground” node. In other words, in a
tree, there are no loops. A “stalk” is a very special kind ektivhere there are no branches: every node has at most two
segments connected to it. In both a tree and a stalk, noddseceslored arbitrarily. In the figure below, the position ba t

left is a tree and the position on the right is a stalk (and alsee, of course).

@i

It turns out that there are some nice recursive methods toled¢ the value of a tree or a stalk, and those recursiveadsth
can sometimes be used to help calculate the values of monglespositions. The idea is based on the following theorem

based on the figure below:
——



If G is some Red-Blue Hackenbush position having val@éor example, the position on the far left of the figure above)
then if the grounded segments@fare connected instead to a single segment of color bluethiearalue of G on a stick”
is equal to the first value from the series:
z+1 24+2 2+3 z+4 2+5 x+6
172 7 4 8 7 16 327
for which the numerator of the expression excekds

(If the “stick” under the gamé&; with value x is instead red, then the value of that game orck &igiven by the first term

in the series:
r—1 x2—2 -3 z—4 z—5 z—6

1 72 74 8 16 0 32
for which the numerator of the expression is exceeded by

These formulas can be obtained by looking at the resultsud Bhd Red moves. We'll do that for the situation above where
we have a game on top of a blue segment as in the figure abovstliigure, Blue can either cut the stick supportihgn
which case the game becomes empty (and has value zero),@c&umake his best move inside the gamegenerating a
gameG g on a blue stick. If Blue has a valid move @ that's always better to do than to cut the lowest segmenedine
result will be something on top of a blue segment whose vaweitainly larger than zero. So Blue should never cut the
bottom segment if there are any blue segments availablet@bave it. If it's Red’s move, his best bet is to make the best
move inG, yielding the positiorG'z on a stick.

If the value ofG is x, we actually need to construct the function mapping the value of a game witt¥ on a blue stick.
Let's call that functionf(x). Note that we can always writeas{xp | zr}, wherexp andxzy are simpler numbers than
(or are empty).

Whatis f(0)? That's equivalent to a null game on a (blue) stick] oo we have/(0) = 1. Now look at the values of ()
wherez is in the next generation; namely,= —1 orx = 1. If x = 1 it's equivalent to two blue segments, 1) = 2.
We can continue with positive values, and cleaflf;) = n + 1, assuming that > 0.

How about whenr = —1? Well, a typical game with value 1 could come from{ | 0}, where Blue has no moves and Red
can make a game of val@le 0 on a blue stick has valuk but if Blue has to cut the stick, he’ll obtain a game of valueo
the valuef(—-1) ={0| 1} =1/2.

What is f(—2)? This could come from the gardg — 1}. Again, Blue’s only move is to cut the bottom stalk, but Red ca
make a game of value1 on a blue stick, and we know (from the previous paragraphy#hee of that game i$/2. Thus

f(=2)={0]1/2} =1/4.

The same pattern will continue fgi{—3), f(—4), - - -, and we will obtain the following table of values f¢r
r= -5 -4 -3 -2 -1 0 1 2 3 4 5
f@)= % % & F 5 1 2 3 4 5 6

The other values fof (x) can be linearly interpolated from the list above, yieldihg formulas stated earlier.
Let's now use this theorem to calculate the value of the jmrshielow:

The topmost single blue segment has valu&'he node below that has two red segments. One is a singleesegvith
value—1, but the one on the right is blue on red (which should haveealil/2). To see that the-1/2 agrees with the

10



formulas, we need to look at the numeratars: 1, x — 2, ..., wherer = 1 (the value of the single blue strut) and find the
first one exceeded by 1. We see that — 1 doesn’t work, nor does — 2 (which is equal to-1, but is not exceeded it), but
finally, 1 — 3 = —2is smaller than-1 therefore the stalk with blue on top of red1i§§ =-1/2.

The next node down, which is one step above the ground, hasgyke sied strut with value-1, plus a blue strut with a
position equal to-3/2 = —1 + (—1/2) on top of it. Nowz will be —3/2 and we need to look at+ 1, z + 2, ... until one
is larger thanl. We see that + 3 works, so the value of the position(i$-3/2)/4 = +3/8. That, plus the red segment with
value -1 yields a game of value5/8 on top of a blue stick. We have to addo that to exceed, so the value of the full
game will be:((—=5/8) +2)/2 = 11/16.

When we evaluate trees by this method (as above), to find tbhe vathe game above each node we need to find the values
of the trees above the node and add them. Then apply the rfiteltthat value of that node. We can work our way to the
bottom of the entire tree in that way.

Note that the formula even works for a single blue (or redys=gt. The game above it is empty, so has value zero. Since
0 + 2 exceedd, the value of the single blue segment willB& = 1, which is correct.

To make sure you understand the rule, try it out on some ofttitkessin the fourth row of examples in Section 12.

In fact, assuming that the base segment of the stalk is btue€tl, just take the negatives of these numbers), there is a
simple algorithm to calculate the value of a stalk:

e Countthe number of blue segments that are connected to tmeinontinuous path. If there aweof them, start with
the numbern.

e For each new segment going up, assign the value of that segones half of the one below it, and add it to the sum
if it is blue, and subtract if it is red.

e When you reach the top of the stalk, that’s your final value.

For example, consider the stalk whose segments are, gtdrim the ground:BBBRRBRRBR. We begin with3
because of the three blue segments. The next red-atld the next red adds 1/4, the following blue adds-1/8, and so
on. Thus the value for this stalk will be:

, L1 11 11 1,87
2 4 8 16 32 64 128 128

With this information, it is not too hard to construct a stalkh any particular value you wish whose denominator is a

power of2. (You might want to think about how to do this before reading following paragraphs.)

Rather than write down the algorithm, let’s just look at a piete example. Suppose you wish to construct a stalk having a
value of3 21/32. This is larger tha’, so begin with a stack of three blue segments, so the vallrestalk so far is. Your
targetis larger thaB, so add another blue, making the valu¢oo large. Add a red, reducinigoy 1/2t03 1/2 = 3 16/32:

too small. Add a blue, increasing the valuelbyi to 3 3/4 = 3 24/32: too large. Add a red, reducing the value b8 to
35/8 = 320/32: too small. Add a blue, addinty/16, and finally a red, subtractingy 32 to achieve the final value. Thus
the required stalk, starting from the ground, will l@BBBRBRBR.

This has interesting applications if you are trying to makésakenbush position that is difficult to win, but not impdusi
Notice that positions with large values are generally edsieBlue to win, so if you've got a position with value, sayp,

in a sense Blue can make three errors that give away a whateesg@nd can still win the game. But a game with value
1/64 will allow almost no wrong moves, assuming that Red playd.wel

So to make a difficult (but winnable) position for Blue, firsake a confusing (with loops and stuff) position and find its
valuewv. Next, build a stalk whose value i564 — v and add that stalk to the position. You now have a positiortlwor
v+1/64 —v=1/64.

11.2 Loops

A “loop” is like a stalk with both ends connected to the grouadconnected to a single node somewhere within a more
complex position. In the figure below, the positions labéldgand(B) are loops.

11



(B) (B")

Berlekamp has proved that to find the value of a loop by findiegoints nearest the two connections to the ground where
the segments change color. In the illustration above, thes#s are marked with asterisks (*). Next, divide the rdshe

loop into two equal pieces. If there are an even number of seggr(as in(B)), then cut at the node. If there are an odd
number, cut the middle segment in half and treat it as two segen(as in(A)). The value of the loop is the sum of the
values of the two segments; in other words, the valugfis the same as the value @d’) and the value of B) is the
same as the value 0B).

It turns out thai(A) is worth3/4 and the two stalks iiA’) are worth9/8 and—3/8, and9/8 — 3/8 = 6/8 = 3/4.

for (B), the full loop has valué5/8 and the two stalks iGB’) have value8 /16 and27/16. We can check3/16+27/16 =
30/16 = 15/8.

8l

(A)

12 Sample Position Values

This section will just list the values of some relatively pipmnHackenbush positions. Many of them are arranged in serie
SO you can see a pattern in the values. Remember that if you theaed and black segments, the value of the resulting
position is the negative of the original position.

I AL A
IS

12

o
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4 52 74 54 78 58 38 18

13 Other Versions of Hackenbush

We will not have the space to cover them here, but there aer otirsions of the game which are analyzed in Conway'’s
books ([Elwyn R. Berlekamp, 1982], [Conway, 1976]).

One possibility is simply to allow infinitely many red and blsegments. These games will have values that correspond to
more of the surreal numbers and they are not wildly more cmatgld. Here’s an interesting example. Suppose there are
two infinitely-long stalks, one all of red segments and theeotll blue. Again, the second player always wins, becasise a
soon as the first player moves, he has to cut somewhere imfimta stalk, and that will leave him with just a finite number

of his segments. The other player simply has to cut higheu&rantee a win, and can cut as much higher as he pleases, so
his advantage after the second move can be arbitrarily.large

Another possibility is to introduce green edges that may lieby either player. Games may have only green edges, or
they may have a combination of green, red and blue edgedlyi-ih@se games that include some green may also have an
infinite number of segments.

13.1 Analyzing Some Infinite Games

If we look at a stalk entirely composed of segments of the sewia, it is clear that the game value of the stalk is just the
height of the stalk or its negative. In other words, a stalR@blues is worth20, a stalk of1000 red segments is worth
—1000, et cetera.

What if we consider a stalk of blue segments that never erntsRoloked to the ground but goes up forever. It's clear that
the value of this stalk is larger than the values of any firtidksof blues, so its value, in some sense, shouldddJsing
the surreal representation, the value of the stalk should be

{11,2,3,4,...} = .

We can test this assumption by noticing that if you are Blutlzave this as one of the components in a game, you can beat
Red if Red has any position with a finite negative value, waeittbe—1, —1000, or —10000000000. When it is your move,
you simply cut high enough that the remaining (now finite)kskeas a large enough positive value to beat Red’s number.

One thing that is interesting about these infinite stalkbasd although the “game board” is infinite, any game playedon i
is finite. There is no limit to how long such a finite game coudd by as soon as you commit to the first cut on that stalk,
there are only a finite number of moves left. The same is tryeufhave two (or ten or a million) such stalks. Each time
you make the initial cut on a stalk, there are only a finite narmdd moves available on that stalk, and when you're finally
done making them, you have to commit on the next stalk to a bidtwmakes it finite, et cetera.

As we expect, The game where each color has an infinite stalidiae zero, since whoever makes the first move commits
to a finite number and the opponent can match that and win byrgtng, or, in fact, cut higher and finish with as large an
advantage as she'd like.

It's also interesting to considens + 17: an infinite stalk plus a single additional stalk of lengthThis is clearly larger than
o0, but not as large aso + 2. You can also look at games with multiple stalks, represgrgurreal numbers likeo x n,
wheren is the number of infinite blue stalks you have.

13



Another easy-to-analyze situation occurs when we condidiée stalks that contain a single blue segment at the bot-
tom, and a longer and longer sequence of red segments ab@&iting with zero red stalks, the successive values are:
1,1/2,1/4,1/8,1/16,.... Soif there are an infinite number of red segments, the valgatio be:

(11,1/2,1/4,1/8,.. ).

This “number” has to be smaller than any positive numberdmgter than zero, so it has a value that we can think of as
1/00. Again, it's easy to see that this is reasonable. No matterrhany of these Blue has, he can’t win in any game where
the rest of the components add up to any negative value for Rgdlaying1000 of them against a single red stalk with
one segment, and Red clearly wins, whether he starts or not.

It's also easy to see why two such stalks for Blue would beangles such stalk for Red, so we have (in surreal numbers
and in Hackenbush games):

0<1l/oo<2/c0<3/oo<...<1/8<1/4<1/2<1.

Let’s look at another, more complex, infinite game. Constersequence of finite stalks below, beginning with the empty
stalk:

The easiest way to work out the stalk values is to use the rdstindSection 11. Start with a red over blue example yielding
-+1/2. Then notice that the inverse, blue over red, would haveevally 2 and work out the value of that over blue, yielding
3/4. The inverse of that will be-3/4, so put that over blue to obtain5/8, and so on.

If we continue in this way to work out the values for thesekstditom left to right, we obtain:

01135112143 85 171 341

If we convert these values to decimal approximations, kevbat we get:

0,1,.5,.75,.625, .6875, .6562, .6719, .6641, .6679, .6660, - -

It sure looks like we're approachiry 3, doesn'tit. Here is a pattern that will allow us to do the excadculation. Beginning
from the first term (with valu®), look at the changes in value of the fractions from one tadaa. They are:

11 1 1 1 1

+11_5a+17_§a+ﬁa_3_27+a7" :

If we add all of these together (it's just a geometric seriéh witial value 1 and ratio—1/2, we obtain (for the infinite
sum)1/(1 — (=1/2)) = 2/3. Thus, a “reasonable” value to assign to an infinite stalk wiblue segment on the bottom
and alternating colors going up forever wouldha.

One way to test this, of course, would be to see if the gameistings of three of these stalks together with two single red
segments is a game having valuen other words, the second player in such a game always witts pptimal play.

The fact that the stalks are infinite doesn’t cause any reddlpms. Once a player takes a hack at a stalk, almost all of the
segments disappear and the remainder is finite.

14



Try to think about how to play this game before reading on.

Notice that any finite piece of the stalks above with a blueveag on the top will have a value larger thaf8 and any
finite stalk with a red segment on top will have a value less thy&. Also, the taller the stalk is, the closer2g3 is the
value.

Assume first that Red has the first move. If he cuts one of thgesired stalks, the game value will be approximately
—1+ 3(2/3) = 2, so that’s probably a bad idea. So Red should cut one of thatmBtalks, but where? The higher he
cuts, the smaller the value, which is what he wants, singelgalues are good for Blue. But he has to commit to some
cut, at which point Blue simply cuts much higher on one of #a@aining stalks, so that the sum of those two finite stalks
is greater tharz/3 + 2/3. If Red cuts the third stalk, the value of the remainder wababe larger thag/3 and we have

a finite game with the three remaining parts of the infinitékstheing worth more tha@, so Blue wins. But if Red cuts
some other place, Blue simply chooses a cut high enough te thaksum of the three stalks larger tiamnd again, he’s
guaranteed a win.

Thus if Red starts, then Blue wins.

Now assume that Blue needs to go first. We can use similarmeggsm this case. Blue wants to cut one of the infinite
stalks as high as possible, but however high he cuts it, Redwzone of the other stalks higher than that, making theevalu
of the game negative, et cetera.
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A Red-Blue Hackenbush position is a collection of pointsreerted by line segments that are colored either red or blue.
Some of the points are on a “ground line”. A segment is coratetd the ground if at least one of its endpoints is on the
ground, or if the segment is connected to another segmeristbannected to the ground.

There are two players named “Red” and “Blue” who alternateeso Red moves by cutting a red segment and Blue, by
cutting a blue one. The cut segment is deleted together witlother segments that are no longer connected to the ground.

When a player is unable to move (in other words, when it isunis &nd there are no longer any segments of his color), he
loses. In fact, it's useful to add the rule that there is agfar winning, but there is an additional prize for every rémrey
segment of your color when the game ends. Thus it is betteirtdoya lot.

[{ ﬁ” Q} - NLEI XLXI
Q) (B) © (D) (E) (F)

For example, in figurg¢ A), if it is Blue’s turn, he will have to cut the only blue segmetitis now Red’s move and he
can cut either the lower or upper segment. If he cuts the loner both disappear, since the upper one will no longer be
connected to the ground, but if he cuts the upper one, a siadlsegment will remain, connected to the ground. In either
case, it is now Blue’s move, and since there are no blue seigntbe game is over and Blue loses. If Red is trying to win
and have remaining red segments, he will obviously cut the uppgment, leaving one at the end of the game. If Red has
to start the game, he will win if he starts by cutting the upgggment and he will lose if he cuts the lower one on his first
move. Obviously, his first move should be to cut the upper one.

For each of the figureg4) through(F') below, figure out which player wins (assuming optimal pland by how much,
assuming that Blue moves first and also if Red moves first. Bardi(A), if Blue starts, Red wins and at the end there is
one red segment left: (+1). If Red starts and plays well, Rgdl w&ins, but with zero red segments left (0). Do the same
analysis for all the figures and fill in the rest of the chart.

Figure Blue Starts Red Starts
(A) Red Wins (+1)| Red Wins (0)
(B)
©)
(D)
(E)
(F)

Notice in all the examples above, the red and blue segmemiadependent, in the sense that a Blue cut can never remove
red segments and vice-versa.

e Insituations like those above, if there arered segments andblue segments, what would the entry in the table look
like (in other words, who wins, and by how much)?

¢ If Blue hasn blue segments all of which are connected to the ground via §#gments, can he always cut them off
in an appropriate order so that he can make a totalmbves?



e Game(D) (called the “null game”) is still a game. You just don’t waattie the first one to move!

e In game(F), no Blue move can cut a red segment and vice-versa. What bisea¢an?

Now try the same analysis for the following three games:

©) (H) 0
Figure | Blue Starts| Red Starts

©G)

(H)

0)

e How can symmetry be used to analyze Hackenbush positions?

A good way to think about Hackenbush positions is to try taaitnumbers to them as we saw in the first set of exercises.
Basically, when the colored segments do not interfere vattheother, you can work out which side has the advantage by
just counting the number of red and blue segments and cairgjdine difference. In situations like this, let each blue
segment be worth-1 and each red segmentl and add them together. If there are more red segments, tdeniititbe
negative, and if there are the same number, the total wilebe.z

In situations like the first 6, a positive total means Blud wilvays win. If the total is negative, Red always wins. If the
total is zero, the first player loses.

What's amazing is thaill Hackenbush games can be assigned a number. Analyze th@tsitens below:

1o

Q) (K) L)
Figure | Blue Starts| Red Starts
Q)
(K)
(L)

e In position(J), Blue clearly has an advantage, but it’s not as big as it wbaldithout the red segment. So if we are
to assign a number to it, that number should be larger theamd less than.

e Position(K) is always a win for the second player, so the total positidone/aught to be). Since it includes two
copies of position(J) and one independent red segment (worth), it's reasonable to assign the valuelof2 to
position(.J).

e Can you see why positiof.) provides evidence that the “Y”-shaped components on th®lefht to be assigned a
value of1/4?



