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Abstract

This article describes the mathematics of the game Red-BlueHackenbush, popularized by Conway, Berlekamp and Guy
([Elwyn R. Berlekamp, 1982], [Conway, 1976]. There are somenotes included about how to use the game in a classroom.

1 The Rules

A Red-Blue Hackenbush position is a collection of points connected by line segments that are colored either red or blue.
Some of the points are on a “ground line”. A segment is connected to the ground if at least one of its endpoints is on the
ground, or if the segment is connected to another segment that is connected to the ground. In this article, the ground will
always be a horizontal black line.

There are two players named “Red” and “Blue” who alternate moves. Red moves by cutting a red segment and Blue, by
cutting a blue one. The cut segment is deleted together with any other segments that are no longer connected to the ground.

When a player is unable to move (in other words, when it is his turn and there are no longer any segments of his color), he
loses. In fact, it’s useful to add the rule that there is a prize for winning, but there is an additional prize for every remaining
segment of your color when the game ends. Thus it is better to win by a lot.

The mathematical name for a Hackenbush position is “graph”;in this case a graph with edges (line segments) colored red
and blue. In fact, any connected graph with one special node (the ground) where all the edges are colored blue or red is
equivalent to a Red-Blue Hackenbush game.

2 Software

Greg Whitehead and Thane Plambek have written a great graphical implementation for the iPad. It’s called “HAKENBUSH”
(no “C”) and it’s available for free at the Apple store.

I’ve written C code to play the game on arbitrary positions. It will play either side and will go first or second. There’s simple
documentation inside the code file. Here’s the source:

http://www.geometer.org/puzzles/hack.c

3 A Sample Game

A sample game appears below, and let us assume (now, and unless stated otherwise in this article) that Blue is to make the
first move.
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Blue’s first move is to cut the blue segment that connects the two triangular structures on the left part of the diagram. The
result is shown below at the left, and that cut will cause not only that segment to disappear, but also the triangle above it
and the connected loop. It should be easy to follow the succeeding steps to the right as Red and Blue take turns hacking off
segments:

=⇒ =⇒ =⇒ =⇒

When Blue cuts his final segment, the game ends and he wins (since Red has no more moves). Do you see why Red’s last
move was wrong and he could have won by cutting the red segmentparallel to the ground? In addition, there are other non-
optimal moves in this sample game. In fact, as we will be able to calculate later, this particular game, if played optimally
by both players, can always be won by the second player. In other words if Blue moves first, Red wins, and if Red moves
first, Blue wins.

At this point, you may want to play with some simple games to try to learn what you can about Hackenbush before reading
on. If you are a teacher, planning to use this in a classroom, one good way to start is to have the class work through the
worksheet that appears as the final two pages of this document.

4 Simple Observations

• If the graph is empty (in other words, if there are no edges), then the player whose turn it is to move loses. Remember
that if you cannot move, you lose. This may seem like a trivialobservation, but one way to analyze Hackenbush
positions is to consider moves that repeatedly simplify thesituation, and if this method is applied recursively, a very
convenient stopping point for the recursion is when the graph is empty.

• If some connected portion of the graph that is rooted to the ground contains onlyn edges of a single color then by
cutting those edges in an appropriate order the player of that color can maken moves on that portion.

• If the red and blue edges do not interact – in other words, if cutting a red edge can never cause a blue one to be
removed and vice-versa, then the result of a game played optimally with m such red edges andn such blue edges
depends only on the value ofn − m. If n − m is positive, Blue is certain to win. Ifn − m is negative, Red is certain
to win. If it is zero, the second player wins. Why?

• Many Hackenbush positions can be broken up into components where the components have no edges or vertices in
common except possibly for the vertex on the ground. If all the components are purely red or blue, we can assign a
value of+n to a component withn edges if it is entirely blue and−n if it is entirely red. If we add these values for all
the components in a position, then Blue, Red or the second player wins, depending on whether that value is positive,
negative or zero.

Although the last item in the list above is a simple observation, the following is not: it turns out that we can assign numerical
values to components where the edges do interact, and those values can be added to give the game a value. In this paper, we
will always associate positive values with positions whereBlue has an advantage and negative ones where the advantage
lies with red. It will turn out in exactly the same way as it didfor solidly-colored components that a position with value zero
(with optimal play by both sides) will always yield a win for the second player.

Finally, notice that a game can look confusing, like the one below:
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In this game there are no obvious red and blue components, although if you look at the game carefully, assuming that neither
side makes a stupid move, there is no way for Red to cut off any blue edges and there is no way for Blue to cut off any red
edges. Thus the value of this game is just the difference of the number of blue and red edges, and in this case, that number
is 0.

5 Analyzing Games

In any game that has to end with a winner or a loser (no ties) andwhere there are a finite number of possible moves and the
game must end in finite time, there is (theoretically, at least) a method to determine the optimal strategy for the players.

Let us analyze the following Hackenbush game under those assumptions:

In this section we assume that Blue makes the first move and that moves are alternated, so there are only 7 possible positions
(A-G) that can be reached (including the initial position). Herethey are:

A: B: C: D: E: F: G:

We can now draw the following complete tree for the game:

AA FF

EE

BB

CC

D Blue winsD Blue wins

GG

D Red winsD Red wins D Red winsD Red wins

To interpret the graph, begin atA on the left. Since it is Blue’s move, he can choose to move to positionsB or E, depending
on which edge he cuts. The next move is Red’s, et cetera.

But it’s easy to analyize the situation backwards. Blue doesnot want to wind up at a node marked “Red wins,” and vice-
versa for Red. Thus if Red is in positionB, he will move toF to guarantee a win. Since Blue makes the first move from
positionA, it is suicide to move toE, and although with optimal play by Red he is sure to lose anyway, at least if Blue
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moves fromA to B there is still a chance to wind up winning.

In a more complex tree, it is probably easier to begin at the rightmost nodes and work your way back, assigning either “Red
wins” or “Blue wins” to each node, working back toward the beginning.

But in this case, by the analysis above, Red, if he plays correctly, can always win if Blue has the first move. Also, since the
game is obviously symmetric in red and blue, if Red starts then Blue can always force a win.

6 More Observations

• If a blue edge is added to any position in any way, the positionbecomes better for Blue, and vice-versa.

• Symmetry is often an aid to analyzing a position.

The first observation above is pretty obvious, since you always want to have options to move, and having an extra option
thus can’t hurt. If you simply ignore the existence of the newedge, you still have all the moves in that position you had
before, and possibly with luck, you can cut the new edge and get another move from the position.

If you can divide a position into two symmetric parts where the structures are identical, but the colors reversed, then this is
a position where, with good play, the second player can always win. Examples of symmetric positions appear in examples
A andF in the previous section, and as examplesG andI in the worksheet at the end of this document.

To see why the second person can always win, simply copy the move of the first person on the symmetric component, and
since the two parts are identical except with swapped colors, there will always be a matching move. Thus there will always
be an even number of moves, and when the moves run out, it will be the first player’s turn, so he will lose.

In the next section, where we will begin to look at the problemof assigning a value to positions, where positions favoring
Blue are assigned positive values and those favoring Red, negative ones, we can see that if two positions are exactly the
same except that all of the colors have been swapped, then thevalue of one will be the negative of the value of the other.

7 Some Fractional Games

In this section we will make some convincing arguments for why certain fractional values can be assigned to certain po-
sitions. We will start with the idea that components of positions that are made up of entirelyn blue segments will have a
value of+n, and if there aren red segments, the value will be−n. Consider the following components:

(A)(A) (B)(B) (C)(C) (D)(D) (E)(E)

ComponentA is straightforward: Blue has exactly one move, and this component should be assigned a value of+1. In all
the other positions, Blue can win whether he starts or not, but each successive position to the right is less desirable forBlue
since Red has more and more options. In a position that contains a component likeE above, if Blue needs to make moves
in other components because they are even more critical, Redhas up to four “free” moves.

So if the value of componentA is +1, what values should we assign to componentsB, C, D, andE? To find out, consider
the complete position labeledF below:
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(F)(F) (G)(G)

It is worthwhile to spend enough time with this game to see that it has value0: in other words, with optimal play by both
sides, whoever plays first will lose. That means that somehowthe two copies of positionB above are equivalent to a single
disjoint red segment (with value−1). This means that it might be reasonable to assign a value of+1/2 to componentB.

Now consider positionG. The rightmost component ofG is the same asB, but with the colors reversed. That means that
its value should probably be−1/2. Again (and this is a little more difficult) you can analyzed positionG and see that it can
always be won by the second player with optimal play by both sides, so the total game has value0. This would mean, of
course, that positionC above should probably be assigned the value+1/4.

Note: It is not too hard to prove that these games are winnable by thesecond player. Think about what we said in Section 6
about symmetry.

Another Note: If you were shown a position that somebody claimed had a valueof −3/4 what would make a convincing
argument that this is true (or false)?

It will also turn out that reasonable values forD, E, et cetera ought to be+1/8, +1/16, et cetera. More on this later.

8 Finding a Game’s Value

Let’s consider a very simple game:

There are two independent components that are completely blue or completely red. A totally methodical way to analyze the
game would be to trace the results of every possible combination of moves. For a game this simple, the best moves by each
side are obvious: hack off the uppermost segment each time. Although it would be more inefficient, it wouldn’t hurt to look
at every possible move.

According to our previous discussions, a reasonable value for this game would be:3 − 2 = +1 (three blue moves for+3
and two red moves for−2 when added yield+1).

If Blue has to move from this position, the resulting positions have values of0, −1 and−2. If instead it is Red’s move,
the resulting games would have values of+2 and+3. Remember that when Red makes a cut, the situation is always worse
for him, since he now has fewer options, so the game values increase (become better for Blue). Similarly, any Blue move
makes the situation worse for him (and better for Red), so thegame value decreases (which is what Red wants).

The true value of the game must therefore be larger than all the game values after Blue moves, but smaller than all the
game values after Red moves. In fact, suppose the game valuesafter a Blue move areB1, B2, . . . Bn (assuming Blue hasn
possible moves) and the values after a Red move areR1, R2, . . . Rm (assuming that Red hasm possible moves). The true
game valueV must be larger than all theBi and smaller than all of theRi. We will indicate this as follows:

V = {B1, B2, . . . , Bn|R1, R2, . . . , Rm}.

(This doesn’t tell us how to calculateV ; it simply is how we will write that value in terms of theBi andRi.)
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For the sample game above, there are three possible Blue moves and two possible Red moves with the values stated above,
and we can write the value of the game as:

{−2,−1, 0|2, 3}.

The game value will be a number that lies above all the Blue-move-created values on the left and below all the Red-move-
created values on the right. We can ignore the “bad” moves andall that really concerns us are the largest value on the left
and the smallest value on the right:

{−2,−1, 0|2, 3} = {0|2}.

In fact, the value of the game is the “simplest” number that lies between the largest number on the left and the smallest
number on the right. In the case of the game we’re considering, we need the simplest number between0 and+2, which is
“obviously” +1.

Let’s look at one more example: the game labeled(B) in Section 7. We decided in that section that a reasonable value might
be+1/2, since combining two of them with a−1 game seemed to make a zero game where the second player could win
with an optimal strategy, but let’s try to see what the “simplest rule” would do for us. In that game, there is only one move
available to each player. If Blue moves, everything is chopped away, yielding a position with value0. Red’s only move
leaves a single blue segment yielding a position with value1. The value of that game ({0|1}) should thus be the simplest
number between0 and1, and+1/2 is not a bad candidate.

Finally, we have to be able to calculate values of games whereone of the players has no moves. For example, suppose the
position has exactly two blue segments, so Red has no moves, but Blue can create a position with values of+1 or 0. Our
notation for the value of this game would be:

{0, +1| },

and the best way to interpret this is as “the simplest number larger than+1, which would be+2. In the opposite game
where there are initially two red and no blue segments, Blue has no moves, but Red can move to0 or −1. Similarly, we’d
be looking for the simplest number smaller than−1, and a good case can be made for−2.

Finally, the value of the empty game is{ | } (no moves available for either side), and so we’re seeking the “simplest number”,
for which zero is a pretty reasonable choice.

With these observations, the value ofany Hackenbush position can be calculated, as long as you’ve gota good idea of what
is meant by the “simplest” number.

9 Surreal Numbers

Note: In this tiny section there is no time to completely prove eventhe most basic theorems about the surreal numbers. It
will turn out, for example, that there are an infinite number of ways to represent each one, but that every one of those ways
will behave in a reasonable way when calculations are made with it. This should not be surprising: the same thing happens
in classic rational numbers:1/2 = 2/4 = 3/6 = 4/8 = · · · , for example. Another missing theorem we will have is that
when a surreal number corresponds to a standard rational number (and all of them will, here), then the surreal number sum
is the same as the rational number sum, and the game represented by the combination of two components having valuesV1

andV2 will have a value ofV1 + V2.

The search for simple numbers will use a (tiny) subset of the so-called “Surreal Numbers” from Conway ([Conway, 1976])
and popularized by Knuth ([Knuth, 1974]) in his book of the same name. The idea is this: imagine that we start with nothing
at generation zero, and in each generation, we produce all possible divisions of the numbers we already have, presented in
the game notation, where all the numbers on the left are smaller than all the numbers on the right.

In generation zero, all we have is this:
{ | },

which we will call0.
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In generation 1, we now have these additional possibilities:

{ |0} and {0| }.

We thus seek the simplest number smaller than0 and the simplest number larger than zero, so in generation 1,we add the
numbers−1 and+1.

For this article, we are only going to work with finite sets of numbers, so when we seek new numbers we only need to look
for them between numbers we already have. Thus in generation2, we’ll have to add these:

{ | − 1}, {−1|0}, {0|1}, and {1| }.

These will be the numbers:−2, −1/2, +1/2 and+2.

The next generation will yield:

−3,−3/2,−3/4,−1/4, +1/4, +3/4, +3/2 and + 3.

The number−3/4 is the simplest one between−1 and−1/2, and so on.

0

−1 0 +1

−2 −1 −

1

2
0 +

1

2
+1 +2

−3 −2 −

3

2
−1 −

3

4
−

1

2
−

1

4
0 +

1

4
+

1

2
+

3

4
+1 +

3

2
+2 +3

−4−3−
5

2
−2−

7

4
−

3

2
−

5

4
−1−

7

8
−

3

4
−

5

8
−

1

2
−

3

8
−

1

4
−

1

8
0+

1

8
+

1

4
+

3

8
+

1

2
+

5

8
+

3

4
+

7

8
+1 +

5

4
+

3

2
+

7

4
+2 +

5

2
+3 +4

The top line in the illustration above shows all the numbers that are created in generation 0. The next line, includes all
the generation 0 numbers, but the newly-introduced (generation 1) numbers are drawn in red. The next line shows all the
numbers that exist in generation 2, but again, with the newly-introduced numbers in red, and so on.

Among a set of numbers, we define the simplest one to be the number which appeared in the earliest generation. Thus,
for example, the simplest number between+1/8 and+3/4 is +1/2. Similarly, the simplest number between any negative
number and any positive number is0 (zero). When you are looking for the simplest number, remember that it may have
occurred much earlier in the generations than the numbers you are looking at. For example, if you have the number0 | 3/4,
its value is1/2. The knee-jerk reaction is to take the average of0 and3/4, or 3/8, which is wrong.

Note that if we let this process go on forever, we will eventually obtain all rational numbers, positive and negative, that have
a power of2 in the denominator. For the Red-Blue Hackenbush game, theseare all the numbers that are required.

Here are a couple of examples of the fact mentioned in the firstparagraph of this section; namely, wildly-different represen-
tations of the same number:

0 = { | } = {−17/64|47/128}= {−1/1024|1000000}= · · ·

1 = {0| } = {1/2|9/8} = {1/16|1000000} = · · ·

1/8 = {0|1/4} = {1/64|3/8} = · · ·

9.1 The rest of the surreal numbers

This subsection is not important to learning about Hackenbush, but the true surreal numbers are fascinating. Here are a
couple more comments about them.

7



The true surreal numbers are constructed by continuing on after “going on forever.” The “next” generation after that will
give all the real numbers plus a sort of positive and negativeinfinity. For example,π will be generated by this number (Z is
the set of integers):

{m/2n : m, n ∈ Z ∧ m/n < π|m/2n : m, n ∈ Z ∧ m/n > π},

and the infinities (calledω and−ω) are generated by:

ω = {m : m ∈ Z| }

−ω = { |m : m ∈ Z}

In other words,ω is the “simplest” number larger than all the integers, and−ω is the simplest one smaller than all of them.

We can also obtain in this step infinitely small numbers, like:

1/ω = {0|1/n : n > 0 ∧ n ∈ Z},

(in other words the number smaller than all positive fractions, but bigger than zero).

In the next generation, we’ll obtain stuff like:ω + 1, ω − 1, 1/2ω, π + 1/ω, et cetera.

10 Calculating a Game Value

In this section, although it will be, perhaps, a bit boring, we will show how the rule in the previous sections allow us to work
out the value of any Hackenbush game. We will work with this example:

(A)(A)

Beginning with this game, the pair of games on the left show all the possibilities of positions that can be obtained with a
Blue move, and all the ones on the right are the possibilitiesafter a Red move.

(D)(D) (E)(E)

⇐=

(A)(A)

=⇒

(B)(B) (C)(C)

From previous work, we know the game values of all the components above except for the tower or alternating colors(B),
and a similar listing of all the moves possible from that are (identical games are assigned the same label, so all the empty
games, for example, are called(E)):

(C)(C) (E)(E)

⇐=

(B)(B)

=⇒

(F)(F) (F)(F)

We know that the values of(C), (D), (E) and(F ) are, respectively,+1/2, +1/4, 0 and+1, so we can find the value ofB:

(B) = {+1/2, 0|+ 1, +1},
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and the simplest number in that range is+3/4.

Now that we know the value of(B), we can obtain the value of(A) as follows:

(A) = {+1/4, 0|+ 3/4, +1/2},

which will yield: (A) = +3/8.

While this method for calculating a game value is conceptually simple, the number of sub-games that need to be analyzed
can be enormous. For example, if the following game is completely analyzed, 31,168,746 positions occur:

11 Stalks, Trees and Loops

11.1 Stalks and Trees

A “tree” is a connected position where there is a unique path from any node to the “ground” node. In other words, in a
tree, there are no loops. A “stalk” is a very special kind of tree where there are no branches: every node has at most two
segments connected to it. In both a tree and a stalk, nodes canbe colored arbitrarily. In the figure below, the position on the
left is a tree and the position on the right is a stalk (and alsoa tree, of course).

It turns out that there are some nice recursive methods to calculate the value of a tree or a stalk, and those recursive methods
can sometimes be used to help calculate the values of more complex positions. The idea is based on the following theorem
based on the figure below:

GG GBGB GRGR
oror
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If G is some Red-Blue Hackenbush position having valuex (for example, the position on the far left of the figure above),
then if the grounded segments ofG are connected instead to a single segment of color blue, thenthe value of “G on a stick”
is equal to the first value from the series:

x + 1

1
,
x + 2

2
,
x + 3

4
,
x + 4

8
,
x + 5

16
,
x + 6

32
, · · ·

for which the numerator of the expression exceeds1.

(If the “stick” under the gameG with value x is instead red, then the value of that game on a stick is given by the first term
in the series:

x − 1

1
,
x − 2

2
,
x − 3

4
,
x − 4

8
,
x − 5

16
,
x − 6

32
, · · ·

for which the numerator of the expression is exceeded by−1.)

These formulas can be obtained by looking at the results of Blue and Red moves. We’ll do that for the situation above where
we have a game on top of a blue segment as in the figure above. In that figure, Blue can either cut the stick supportingG, in
which case the game becomes empty (and has value zero), or Blue can make his best move inside the gameG, generating a
gameGB on a blue stick. If Blue has a valid move inG, that’s always better to do than to cut the lowest segment since the
result will be something on top of a blue segment whose value is certainly larger than zero. So Blue should never cut the
bottom segment if there are any blue segments available to cut above it. If it’s Red’s move, his best bet is to make the best
move inG, yielding the positionGR on a stick.

If the value ofG is x, we actually need to construct the function mappingx to the value of a game withG on a blue stick.
Let’s call that functionf(x). Note that we can always writex as{xB | xR}, wherexB andxR are simpler numbers thanx
(or are empty).

What isf(0)? That’s equivalent to a null game on a (blue) stick, or1, so we havef(0) = 1. Now look at the values off(x)
wherex is in the next generation; namely,x = −1 or x = 1. If x = 1 it’s equivalent to two blue segments, orf(1) = 2.
We can continue with positive values, and clearly,f(n) = n + 1, assuming thatn ≥ 0.

How about whenx = −1? Well, a typical game with value−1 could come from{ | 0}, where Blue has no moves and Red
can make a game of value0. 0 on a blue stick has value1, but if Blue has to cut the stick, he’ll obtain a game of value0, so
the valuef(−1) = {0 | 1} = 1/2.

What isf(−2)? This could come from the game{ | − 1}. Again, Blue’s only move is to cut the bottom stalk, but Red can
make a game of value−1 on a blue stick, and we know (from the previous paragraph) thevalue of that game is1/2. Thus
f(−2) = {0 | 1/2} = 1/4.

The same pattern will continue forf(−3), f(−4), · · · , and we will obtain the following table of values forf :

x = −5 −4 −3 −2 −1 0 1 2 3 4 5
f(x) = 1

32

1

16

1

8

1

4

1

2
1 2 3 4 5 6

The other values forf(x) can be linearly interpolated from the list above, yielding the formulas stated earlier.

Let’s now use this theorem to calculate the value of the position below:

The topmost single blue segment has value1. The node below that has two red segments. One is a single segment with
value−1, but the one on the right is blue on red (which should have value−1/2). To see that the−1/2 agrees with the
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formulas, we need to look at the numerators:x − 1, x − 2, . . . , wherex = 1 (the value of the single blue strut) and find the
first one exceeded by−1. We see that1− 1 doesn’t work, nor does1− 2 (which is equal to−1, but is not exceeded it), but
finally, 1 − 3 = −2 is smaller than−1 therefore the stalk with blue on top of red is1−3

4
= −1/2.

The next node down, which is one step above the ground, has a single red strut with value−1, plus a blue strut with a
position equal to−3/2 = −1 + (−1/2) on top of it. Nowx will be −3/2 and we need to look atx + 1, x + 2, . . . until one
is larger than1. We see thatx+3 works, so the value of the position is(+3/2)/4 = +3/8. That, plus the red segment with
value -1 yields a game of value−5/8 on top of a blue stick. We have to add2 to that to exceed1, so the value of the full
game will be:((−5/8) + 2)/2 = 11/16.

When we evaluate trees by this method (as above), to find the value of the game above each node we need to find the values
of the trees above the node and add them. Then apply the rule tofind that value of that node. We can work our way to the
bottom of the entire tree in that way.

Note that the formula even works for a single blue (or red) segment. The game above it is empty, so has value zero. Since
0 + 2 exceeds1, the value of the single blue segment will be2/2 = 1, which is correct.

To make sure you understand the rule, try it out on some of the stalks in the fourth row of examples in Section 12.

In fact, assuming that the base segment of the stalk is blue (for red, just take the negatives of these numbers), there is a
simple algorithm to calculate the value of a stalk:

• Count the number of blue segments that are connected to the inone continuous path. If there aren of them, start with
the numbern.

• For each new segment going up, assign the value of that segment to be half of the one below it, and add it to the sum
if it is blue, and subtract if it is red.

• When you reach the top of the stalk, that’s your final value.

For example, consider the stalk whose segments are, starting from the ground:BBBRRBRRBR. We begin with3
because of the three blue segments. The next red adds−1/2, the next red adds−1/4, the following blue adds+1/8, and so
on. Thus the value for this stalk will be:

3 −
1

2
−

1

4
+

1

8
−

1

16
−

1

32
+

1

64
−

1

128
= 2

37

128
.

With this information, it is not too hard to construct a stalkwith any particular value you wish whose denominator is a
power of2. (You might want to think about how to do this before reading the following paragraphs.)

Rather than write down the algorithm, let’s just look at a complete example. Suppose you wish to construct a stalk having a
value of3 21/32. This is larger than3, so begin with a stack of three blue segments, so the value of the stalk so far is3. Your
target is larger than3, so add another blue, making the value4: too large. Add a red, reducing4 by 1/2 to 3 1/2 = 3 16/32:
too small. Add a blue, increasing the value by1/4 to 3 3/4 = 3 24/32: too large. Add a red, reducing the value by1/8 to
3 5/8 = 3 20/32: too small. Add a blue, adding1/16, and finally a red, subtracting1/32 to achieve the final value. Thus
the required stalk, starting from the ground, will be:BBBBRBRBR.

This has interesting applications if you are trying to make aHackenbush position that is difficult to win, but not impossible.
Notice that positions with large values are generally easier for Blue to win, so if you’ve got a position with value, say,3.5,
in a sense Blue can make three errors that give away a whole segment and can still win the game. But a game with value
1/64 will allow almost no wrong moves, assuming that Red plays well.

So to make a difficult (but winnable) position for Blue, first make a confusing (with loops and stuff) position and find its
valuev. Next, build a stalk whose value is1/64 − v and add that stalk to the position. You now have a position worth
v + 1/64− v = 1/64.

11.2 Loops

A “loop” is like a stalk with both ends connected to the ground, or connected to a single node somewhere within a more
complex position. In the figure below, the positions labeled(A) and(B) are loops.
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(A)(A) (B)(B)(A’)(A’) (B’)(B’)

**
** **

**

Berlekamp has proved that to find the value of a loop by finding the points nearest the two connections to the ground where
the segments change color. In the illustration above, thesepoints are marked with asterisks (*). Next, divide the rest of the
loop into two equal pieces. If there are an even number of segments (as in(B)), then cut at the node. If there are an odd
number, cut the middle segment in half and treat it as two segments (as in(A)). The value of the loop is the sum of the
values of the two segments; in other words, the value of(A) is the same as the value of(A′) and the value of(B) is the
same as the value of(B′).

It turns out that(A) is worth3/4 and the two stalks in(A′) are worth9/8 and−3/8, and9/8 − 3/8 = 6/8 = 3/4.

for (B), the full loop has value15/8 and the two stalks in(B′) have values3/16 and27/16. We can check:3/16+27/16 =
30/16 = 15/8.

12 Sample Position Values

This section will just list the values of some relatively simply Hackenbush positions. Many of them are arranged in series
so you can see a pattern in the values. Remember that if you swap the red and black segments, the value of the resulting
position is the negative of the original position.

1/21/2 1/41/4 1/81/8 1/161/16 11 22 33

3/43/4 7/87/8 15/1615/16 1/21/2 1/41/4 1/81/8

11 11 1/21/2 1/21/2 1/41/4
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44 5/25/2 7/47/4 5/45/4 7/87/8 5/85/8 3/83/8 1/81/8

13 Other Versions of Hackenbush

We will not have the space to cover them here, but there are other versions of the game which are analyzed in Conway’s
books ([Elwyn R. Berlekamp, 1982], [Conway, 1976]).

One possibility is simply to allow infinitely many red and blue segments. These games will have values that correspond to
more of the surreal numbers and they are not wildly more complicated. Here’s an interesting example. Suppose there are
two infinitely-long stalks, one all of red segments and the other all blue. Again, the second player always wins, because as
soon as the first player moves, he has to cut somewhere in that infinite stalk, and that will leave him with just a finite number
of his segments. The other player simply has to cut higher to guarantee a win, and can cut as much higher as he pleases, so
his advantage after the second move can be arbitrarily large.

Another possibility is to introduce green edges that may be cut by either player. Games may have only green edges, or
they may have a combination of green, red and blue edges. Finally, these games that include some green may also have an
infinite number of segments.

13.1 Analyzing Some Infinite Games

If we look at a stalk entirely composed of segments of the samecolor, it is clear that the game value of the stalk is just the
height of the stalk or its negative. In other words, a stalk of20 blues is worth20, a stalk of1000 red segments is worth
−1000, et cetera.

What if we consider a stalk of blue segments that never ends? It’s hooked to the ground but goes up forever. It’s clear that
the value of this stalk is larger than the values of any finite stalk of blues, so its value, in some sense, should be∞. Using
the surreal representation, the value of the stalk should be:

{ |1, 2, 3, 4, . . .} = ∞.

We can test this assumption by noticing that if you are Blue and have this as one of the components in a game, you can beat
Red if Red has any position with a finite negative value, whether it be−1,−1000, or−10000000000. When it is your move,
you simply cut high enough that the remaining (now finite) stalk has a large enough positive value to beat Red’s number.

One thing that is interesting about these infinite stalks is that although the “game board” is infinite, any game played on it
is finite. There is no limit to how long such a finite game could be, by as soon as you commit to the first cut on that stalk,
there are only a finite number of moves left. The same is true ifyou have two (or ten or a million) such stalks. Each time
you make the initial cut on a stalk, there are only a finite number of moves available on that stalk, and when you’re finally
done making them, you have to commit on the next stalk to a cut which makes it finite, et cetera.

As we expect, The game where each color has an infinite stalk has value zero, since whoever makes the first move commits
to a finite number and the opponent can match that and win by symmetry, or, in fact, cut higher and finish with as large an
advantage as she’d like.

It’s also interesting to consider “∞+1”: an infinite stalk plus a single additional stalk of length1. This is clearly larger than
∞, but not as large as∞ + 2. You can also look at games with multiple stalks, representing surreal numbers like∞× n,
wheren is the number of infinite blue stalks you have.

13



Another easy-to-analyze situation occurs when we considerfinite stalks that contain a single blue segment at the bot-
tom, and a longer and longer sequence of red segments above it. Starting with zero red stalks, the successive values are:
1, 1/2, 1/4, 1/8, 1/16, . . .. So if there are an infinite number of red segments, the value ought to be:

{ |1, 1/2, 1/4, 1/8, . . .}.

This “number” has to be smaller than any positive number, butlarger than zero, so it has a value that we can think of as
1/∞. Again, it’s easy to see that this is reasonable. No matter how many of these Blue has, he can’t win in any game where
the rest of the components add up to any negative value for Red. Try playing1000 of them against a single red stalk with
one segment, and Red clearly wins, whether he starts or not.

It’s also easy to see why two such stalks for Blue would beat a single such stalk for Red, so we have (in surreal numbers
and in Hackenbush games):

0 < 1/∞ < 2/∞ < 3/∞ < . . . < 1/8 < 1/4 < 1/2 < 1.

Let’s look at another, more complex, infinite game. Considerthe sequence of finite stalks below, beginning with the empty
stalk:

The easiest way to work out the stalk values is to use the methods in Section 11. Start with a red over blue example yielding
+1/2. Then notice that the inverse, blue over red, would have value−1/2 and work out the value of that over blue, yielding
3/4. The inverse of that will be−3/4, so put that over blue to obtain+5/8, and so on.

If we continue in this way to work out the values for these stalks from left to right, we obtain:

0, 1,
1

2
,
3

4
,
5

8
,
11

16
,
21

32
,
43

64
,

85

128
,
171

256
,
341

512
, · · ·

If we convert these values to decimal approximations, here’s what we get:

0, 1, .5, .75, .625, .6875, .6562, .6719, .6641, .6679, .6660, · · ·

It sure looks like we’re approaching2/3, doesn’t it. Here is a pattern that will allow us to do the exact calculation. Beginning
from the first term (with value0), look at the changes in value of the fractions from one to thenext. They are:

+1,−
1

2
, +

1

4
,−

1

8
, +

1

16
,−

1

32
, +

1

64
, · · ·

If we add all of these together (it’s just a geometric series with initial value1 and ratio−1/2, we obtain (for the infinite
sum)1/(1 − (−1/2)) = 2/3. Thus, a “reasonable” value to assign to an infinite stalk with a blue segment on the bottom
and alternating colors going up forever would be2/3.

One way to test this, of course, would be to see if the game consisting of three of these stalks together with two single red
segments is a game having value0: in other words, the second player in such a game always wins,with optimal play.

The fact that the stalks are infinite doesn’t cause any real problems. Once a player takes a hack at a stalk, almost all of the
segments disappear and the remainder is finite.
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Try to think about how to play this game before reading on.

Notice that any finite piece of the stalks above with a blue segment on the top will have a value larger than2/3 and any
finite stalk with a red segment on top will have a value less than 2/3. Also, the taller the stalk is, the closer to2/3 is the
value.

Assume first that Red has the first move. If he cuts one of the single red stalks, the game value will be approximately
−1 + 3(2/3) = 2, so that’s probably a bad idea. So Red should cut one of the infinite stalks, but where? The higher he
cuts, the smaller the value, which is what he wants, since large values are good for Blue. But he has to commit to some
cut, at which point Blue simply cuts much higher on one of the remaining stalks, so that the sum of those two finite stalks
is greater than2/3 + 2/3. If Red cuts the third stalk, the value of the remainder will also be larger than2/3 and we have
a finite game with the three remaining parts of the infinite stalks being worth more than2, so Blue wins. But if Red cuts
some other place, Blue simply chooses a cut high enough to make the sum of the three stalks larger than2, and again, he’s
guaranteed a win.

Thus if Red starts, then Blue wins.

Now assume that Blue needs to go first. We can use similar reasoning in this case. Blue wants to cut one of the infinite
stalks as high as possible, but however high he cuts it, Red can cut one of the other stalks higher than that, making the value
of the game negative, et cetera.
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A Red-Blue Hackenbush position is a collection of points connected by line segments that are colored either red or blue.
Some of the points are on a “ground line”. A segment is connected to the ground if at least one of its endpoints is on the
ground, or if the segment is connected to another segment that is connected to the ground.

There are two players named “Red” and “Blue” who alternate moves. Red moves by cutting a red segment and Blue, by
cutting a blue one. The cut segment is deleted together with any other segments that are no longer connected to the ground.

When a player is unable to move (in other words, when it is his turn and there are no longer any segments of his color), he
loses. In fact, it’s useful to add the rule that there is a prize for winning, but there is an additional prize for every remaining
segment of your color when the game ends. Thus it is better to win by a lot.

(A)(A) (B)(B) (C)(C) (D)(D) (E)(E) (F)(F)

For example, in figure(A), if it is Blue’s turn, he will have to cut the only blue segment. It is now Red’s move and he
can cut either the lower or upper segment. If he cuts the lowerone, both disappear, since the upper one will no longer be
connected to the ground, but if he cuts the upper one, a singlered segment will remain, connected to the ground. In either
case, it is now Blue’s move, and since there are no blue segments, the game is over and Blue loses. If Red is trying to win
and have remaining red segments, he will obviously cut the uppersegment, leaving one at the end of the game. If Red has
to start the game, he will win if he starts by cutting the uppersegment and he will lose if he cuts the lower one on his first
move. Obviously, his first move should be to cut the upper one.

For each of the figures(A) through(F ) below, figure out which player wins (assuming optimal play),and by how much,
assuming that Blue moves first and also if Red moves first. For figure(A), if Blue starts, Red wins and at the end there is
one red segment left: (+1). If Red starts and plays well, Red also wins, but with zero red segments left (0). Do the same
analysis for all the figures and fill in the rest of the chart.

Figure Blue Starts Red Starts
(A) Red Wins (+1) Red Wins (0)
(B)
(C)
(D)
(E)
(F)

Notice in all the examples above, the red and blue segments are independent, in the sense that a Blue cut can never remove
red segments and vice-versa.

• In situations like those above, if there arem red segments andn blue segments, what would the entry in the table look
like (in other words, who wins, and by how much)?

• If Blue hasn blue segments all of which are connected to the ground via blue segments, can he always cut them off
in an appropriate order so that he can make a total ofn moves?



• Game(D) (called the “null game”) is still a game. You just don’t want to be the first one to move!

• In game(F ), no Blue move can cut a red segment and vice-versa. What does this mean?

Now try the same analysis for the following three games:

(G)(G) (H)(H) (I)(I)

Figure Blue Starts Red Starts
(G)
(H)
(I)

• How can symmetry be used to analyze Hackenbush positions?

A good way to think about Hackenbush positions is to try to attach numbers to them as we saw in the first set of exercises.
Basically, when the colored segments do not interfere with each other, you can work out which side has the advantage by
just counting the number of red and blue segments and considering the difference. In situations like this, let each blue
segment be worth+1 and each red segment−1 and add them together. If there are more red segments, the total will be
negative, and if there are the same number, the total will be zero.

In situations like the first 6, a positive total means Blue will always win. If the total is negative, Red always wins. If the
total is zero, the first player loses.

What’s amazing is thatall Hackenbush games can be assigned a number. Analyze the threepositions below:

(J)(J) (K)(K) (L)(L)

Figure Blue Starts Red Starts
(J)
(K)
(L)

• In position(J), Blue clearly has an advantage, but it’s not as big as it wouldbe without the red segment. So if we are
to assign a number to it, that number should be larger than0 and less than1.

• Position(K) is always a win for the second player, so the total position value ought to be0. Since it includes two
copies of position(J) and one independent red segment (worth−1), it’s reasonable to assign the value of1/2 to
position(J).

• Can you see why position(L) provides evidence that the “Y”-shaped components on the left ought to be assigned a
value of1/4?


