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1 What is an“Inter esting” Theorem?

What makes a Euclideangeometrytheorem*interesting”? Thereare probablya lot

of answerdo this, but quite oftenit is whensomethingoccursthatis too lucky to be
a coincidence.For example,if you draw somediagramandtwo of the pointsof the
diagramlie onaline, thatis notinterestingatall, sinceevery pair of pointslie onsome
line. Butif three pointslie on a line whenthey were not definedto be on thatline
in the first place,the situationis usually interesting. In fact, if you randomlyplace
threepointson a finite portion of a Euclideanplane,selectedn a uniform way, the
probabilitythatall threewill lie onthesameline is exactly zero.

Similarly, if two non-parallelines meetat a point, thatis not at all interesting but if

threeor moredo, it maybeveryinteresting.

The samesort of ideaappliesto otherfigures. If two circlesin the planeintersectin

two points,or do notintersectat all, thisis usuallynotinteresting But if they intersect
at exactly one point (they aretangent,in otherwords), the situationis usually very
interesting.

Webggin thisdocumentvith ashortdiscussiorof sometoolsthatareusefulconcerning
four pointslying on a circle, andfollow that with four problemsthat can be solved
usingthosetechniquesThe solutionsto thoseproblemsarepresentedtthe endof the
document.

2 Pointson Circles

If two pointslie onacircle, thatis notinterestingatall. In fact,for any two Euclidean
points,thereareaninfinite numberof circlesthatpassthroughbothof them.
Threepointsonacircleis alsonotinteresting.Unlessthethreepointshapperto lie on
the samestraightline (which hasprobability zeroof occurringby chance)they lie on
acircle. To seethis, constructthe perpendiculabisectorsof the segmentgoining ary
two pairsof the points. Sincethe pointsdo notlie in aline, the perpendiculabisectors
arenot parallel,andmustmeetsomevhere. Any point on the perpendiculabisector
of two pointsis equidistantfrom thosepoints, so the point at the intersectionof the
two perpendiculabisectords equidistanfrom all threepoints. Thusa circle centered



atthis intersectionpassinghroughany oneof the threepointsmustpassthroughthe
othertwo.

Sincethefirst threepointsdefinea circle, it is almostimpossiblefor the fourth point
to lie on thatcircle by chance.Thusif, in a diagram,four pointsthatarenotin some
sensalefinedto lie onacircle dolie onacircle,thatis aninterestingoccurrenceandit

mayindicatethataninterestingtheoremcanbefound.

Olwviously, if five, six, or morepointslie onacircle, thatmaybeevenmoreinteresting,
andonetheoremwe will examinehereconcernghe famous‘nine point circle” where
ninepointsrelatedto ary triangleall lie onthe samecircle. SeeSection4.1.

3 CirclePreliminaries

Figurel: CentralAngle andInscribedAngle

Theres basicallyonetheoremwe needto know to shav a large numberof interesting
thingsaboutsetsof pointsonacircle. Arcs of circlesaremeasuredby thecentralangle.
In theleft partof Figurel, O is thecenterof thecircle,andthe measuref thearc AB
is thesameasthe measuref the centralangle.Both arecalledd in thefigure.

Theright partof Figurel illustratesthe theorem.If anangleis inscribedin the circle

thatintersectghecirclein anarcof sizeg, thenthemeasuref theangle/ACB is §/2.

Thisis not obvious,andrequiresproof, but it is provedin every high schoolgeometry
course.

We mustbealittle carefulhere.In thefigure,thetwo points A and B really determine
two arcs—inthis casea shortonethat’s perhap$0° in thefigure,therestof thecircle

(which is about310° in the figure). If thereis ary question,we will namethe two

pointsthatboundthearcin suchawaythatthearcis the partof thecircle from thefirst



to thesecondn acounterclockwisedirection. Thusin thefigure,arc AB is about50°
andarcBA is about310°.

If, in Figurel, thepointC wereonthearc AB (thesmallone),theangle/ AC' B would
measurdalf of about310°.

This basicfact aboutanglesinscribedin a circle andthe fact that a completecircle
contains360 degreesallows usto prove awide variety of interestingheorems.

A

Figure2: Cyclic Quadrilateral

Sincewe will be consideringthe casewherefour (or more) points lie on a circle,
considersomeeasy(andnot so easy)resultsdisplayedin Figure?2. In thatfigure, the
fourverticesA4, B, C, andD lie onacirclein order We will leta, b, ¢, andd represent
thelengthsof thesegmentsAB, BC, C D, andD A, respectiely.

ABCD is aquadrilaterathatis inscribedin acircle, andis calledacyclic quadrilateral
(or sometimes congyclic quadrilateral).

The mostinterestingand useful resultis this: ZABC + /CDA = 180° (andalso,
of course,/DAB + /BCD = 180°). This is easyto see,since/ABC is half the
measureof arc AC (measuredounterclockwisepnd /CD A is half the measureof
arcCA. But arcsAC andC A togethermake the entire circle, or 360°, so the two
oppositeanglesn ary cyclic quadrilaterahresupplementaryor in otherwords,addto
make the straightangle.

It is notdifficult to seethe corverse;namely thatif two oppositeanglesin aquadrilat-
eraladdto 180°, thenthe quadrilaterals cyclic.

A veryimportantspecialcaseof this is whenthe two oppositeanglesareright angles,
or 90°. This happen®ften,andwhenit does theresultingquadrilaterals cyclic.

3.1 Ptolemy’s Theorem

Thereis a very easyway to determinewvhetherfour pointslie on a circle if you know
thedistancedetweerthem.Corverselyif you know thatfour pointslie onary circle,
theformulabelow, known asPtolemys Theoremholds.



In Figure2, if:

AB-CD+ BC-DA=AC-BD
thenthefour points A4, B, C, andD all lie onacircle.
We will proveonedirectionof thisresultin Section10.

3.2 Brahmagupta’s Formula

Again, we will not prove this resultheresinceit is not usedin the problemset, but it
alsorelatesto cyclic quadrilaterals The usualproofis straightforward, but involvesa
lot of patiencewith trigonometricmanipulationghat begin with the obsenation that
thelaws of sinesandcosinesapplyto varioustrianglesin thefigure.

Brahmagupta formula provides a methodto calculate A(ABC D), the areaof the
cyclic quadrilateradA BC'D. Hereit is:

If ABCD is a cyclic quadrilateralwhosesideshave lengthsa, b, ¢, andd, thenif
s = (a+ b+ ¢+ d)/2 is thesemiperimeteiits areais givenby:

A(ABCD) = /(s — a)(s = b)(s — ¢)(s — d).

Notice that from Brahmagupta formulait is trivial to deduceHeron's formula for
the areaof ary triangle (remembeithat every triangleis congyclic). Hereis Heron's
formula for the areaof a triangle AABC having sidesof lengthsa, b, and¢ and
semiperimetes = (a + b+ ¢)/2:

A(AABC) = /s(s —a)(s — b)(s — c).

Thederivationof Heron'sformulais obvious: pick apoint D nearC of AABC, buton
its circumcircle. Thenlet D approactC. Theterm (s — d) in Brahmagupta formula
will tendtoward s, andthe quadrilateralABC'D will becomemoreandmorelike the
triangle AABC.

4 Problems

4.1 The Nine Point Circle

This is perhapsone of the mostamazingtheoremsn Euclideangeometry It states
thatif you begin with ary triangle, the nine points consistingof the midpointsof the
sides(points4’, B’, andC" in Figure3), thefeetof thealtitudes(pointsE, F', andG),

andthe midpointsof the sggmentsfrom the orthocentetto the verticesof the triangle
(points@, R, and\S), all lie onthe samecircle.

(Theorthocente is theintersectiorof thethreealtitudes.)

For the proof, seeSection5.



Figure3: Nine PointCircle

4.2 Miquel’'sTheorem

B

Figure4: Miquel's Theorem

Figure 4 shavs two examplesof Miquel's theorem. Chooseary triangle and then
choosea point on eachof its sides. Constructcircles passingthrougheachvertex of
thetriangleandthroughthe pointson the two adjacensides.All threeof thosecircles
meetat a point.

Thefigure shavs thatthe resultseemdo hold in two caseshut notethatthe point of
intersectiorof thethreecirclesmaynotlie within the original triangle.

In fact, the theoremeven holdsif the points on the sidesof the triangle do not lie
betweertheverticesof thetriangle.

For the proof, seeSection6

4.3 Napoleons Theorem

Napoleons Theorem(seeFigure5) saysthatgivenany triangle,if you erectequilateral
triangleson the edgesof thattriangle, all pointing outward, that the centersof those
threetriangleswill form anequilaterakriangle.In thefigurethreecirclesaredrann to
giveahint asto how the proof shouldproceed Notice thatthosethreecirclesall seem
to meetata point.



Figure5: Napoleons Theorem

For the proof, seeSection7

4.4 The SimsonLine

Figure6: The SimsonLine

Let M beary pointon the circumcircleof AABC. From M, drop perpendicularso
eachof the sidesof thetriangle. Shav thatthe pointsof intersectiorof the perpendic-
ularswith thesidesall lie onaline calledthe SimsonLine. SeeFigure6

For the proof, seeSection8

4.5 FagnanosProblem

Fagnanas problemis the following: Givenanacute-angledriangle AABC, find the
triangle with the smallestperimeterwhoseverticeslie on the edgesof AABC. In
Figure7, thistrianglewith smallesiperimeteris ADEF .

The answeris thatit is the triangle whoseverticesare the feet of the altitudesof the
originaltriangle. The easiesproof usessomeinterestingargumentsnvolving notonly
circles,but reflectionsof the original triangle.

For the proof, seeSection9



Figure7: Fagnanos Problem

5 Proof: Nine Point Circle

/
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Figure8: Nine PointCircle

SeeFigure8. We will prove thatall nine pointslie on the circle by first shaving that
thesix pointsA4’, C’, @, S, E andF all lie onacircle. Theproofwill usetheline AC
asthe baseof thetriangle. But every triangle hasthreebasesandif we considerthe
line AB to thethe base exactly the sameproof would shav thatthe points 4’, B’, R,
Q, E, andG alsolie on the samecircle. Sincethesetwo circleshave threepointsin
common:4’, @, andE, they mustbe the samecircle, andhenceall nine pointslie on
thesamecircle.

Since A’ and C' are midpointsof the sidesof AABC, we know that A’C’ || AC.
Similarly, since@ andS aremidpointsof the sidesof AAHC, QS || AC. Butsince
both @S and A'C’ areparallelto the sameline AC, they are parallelto eachother:
QS| A'C.

Usingthe samereasoningsince A’ and.S aremidpointsof BC and HC in ABHC,
A'S || BH. If welook at ABH A, repeatthe reasoningo shav thatC'Q || BH.



SinceC’) and A’S areboth parallelto the sameline BH, they areparallelto each
other ThusA’'C’'QS is aparallelogram.

But it is morethana parallelogramit is arectangle.Since BH is partof the altitude
of thetriangle BH 1. AC. Becaused’S and@S areparallelto perpendiculatines,
A'S | QS. Therefored’C’'QS is arectangle.

Let N bethe centerof therectangle.Obviously N is equidistanfrom 4’, C’, @, and
S, soall four of thosepointslie onacircle centerecht N.

In this circle, A’Q andC’S arediameters.SincethelinesQF andSF arealtitudes,
(A'EQ = /C'FS = 90°. Buttheseaight anglessubtendhediametersd’ @ andC’S,
so F andF lie onthecircle centerecat N andpassinghroughpoints 4’, C’, @, and
S. Thuswe have showvn thatsix of thenine pointslie onacircle.

As we saidabove, thereis no reasonto assumehat AC' is the only base,and using
either AB or BC asbasewe canshaow thatothersetsof six pointslie on circles,and
sinceeachsethasthreepointsin commonwith thetwo othersets all ninepointslie on
thesamecircle.

6 Proof: Miquel' s Theorem

Figure9: Miquel's Theorem

Theproofis fairly simple;seeFigure9.

Usingthelabelsin Figure9, begin by consideringonly two of thecircles—AEF and
BFD. They will meetatsomepoint M, andourgoalwill beto shav thatthepoint A/
alsoliesonthecircle CED.

Constructines DM, EM, and F'M, forming two cyclic quadrilateralse EM F and
BDMF. Sincethequadrilateralsrecyclic, we know that/EAF + /EMF = 180°
andthat/FBD+ /DM F = 180°. Wealsoknow that/EAF + /FBD + /DCD =
180° sincethey arethethreeanglesf atriangle,andweknow that/ EM F+/ DM F+
/EMD = 360°.

Apply alittle algebrato thoseequationdo concludethat/DCE + /EM D = 180°.
If two oppositeanglesn aquadrilaterahddto 180°, we know thatit is a cyclic quadri-



lateral,sothe pointsC, E, M andD all lie onacircle. Thusthethreecirclesmeetat
thepoint M.

7 Proof: Napoleon's Theorem

Figure10: Napoleons Theorem

The proof of Napoleons Theoremis similarin somewaysto the previous proof. See
Figure10. We begin by constructingcirclesaroundthe threeequilateraltrianglesand
we will show thatthey all meetatapoint.

In the figure, considerthe two circles ABF and CBD. In additionto meetingat
B they will meetat anotherpoint O. SincequadrilateralsAOBF and BOCD are
cyclic, we know thatoppositeanglesin themaddto 180°. Thus/AOB + /BF A =
LCOB + (/BDC = 180°. But thetrianglesAABF and ACBD areequilateralso
[BFA=/BDC = 60°. Thuswe canconcludethat/COB = /AOB = 120°.

Sincetheangles COB, /AOB, and/CO A addto makeafull 360°, /COA = 120°.
But thensince/COA + /CEA = 180°, quadrilateralE AOC is cyclic, sothethree
circlessurroundinghe exterior equilaterakrianglesmeetin asinglepointO. Not only
that,but thelines AO, BO, andCO all meetat120° angles.

Thepoints@, R, andS arecentersboth of the equilateraltrianglesandof the circles,
sothe lines connectingthemare perpendiculato thelines AQ, BO, andCO. Thus
/SA'0O = /SB'O = 90° andsincethey addto 180°, quadrilateralS A’ OB’ is cyclic
and/A’SB’ + 120° = 180°. Therefore/ A’SB’ = 60°. But the sameargumentcan
bemadeto shov that/C'QB’ = /A’ RC’ = 60°, soAQRS is equilateral.



8 Proof: The SimsonLine

Thefollowing proof worksonly if M liesonthearcbetweenB andC. If it is onone
of theotherarcs,renamethe pointsappropriatelybeforebeginning.

Figurell: TheSimsonLine

Sincethelinesdroppedrom M areperpendiculato thesidesof thetriangle,they form
right anglesandit is easyto seein Figurellthat M A’BC’', MA'B'C and M C' AB’
aresetsof congyclic points. Olviously ABM C is alsocongyclic, sinceM is on the
circumcircleof AABC.

SinceABMC andM C’'AB'’ arecongyclic setsof points,both/BMC and/C’'M B’
aresupplementaryo / BAC. Thereforethey areequal.Since/BMC = /BM B’ +
/B'"MC and/C'MB' = /{BMB' + /C'"MB wefind that/B'MC = /C'MB.
But sinceeachof thoseanglesliesin acircle, /C'MB = /C'A’'B and/B'MC =
/B'A'C.

Theequalityof thefinal pairof anglesprovesthatthepointsB’, A’ andC’ arecollinear,
sinceequalverticalanglesareguaranteedt A’.

9 Proof: Fagnano’s Problem

Figurel2: EqualAngles

To prove that the triangle connectingthe feet of the altitudesof an acutetriangle has
theminimumperimeteywefirst needto provealemma.We will shaw thatthis“pedal”
triangle ADEF in Figure 12 makesequalangleswith the basesf the triangles. In
otherwords,we needto shawv that/BDE = / ADF.

10



We begin by consideringhe two circlespassinghroughAF D andBED. lt is clear
thatbothpasshroughH, the orthocentenf A ABC sincebothquadrilateralsADH B
andBDH E containtwo oppositeright anglesandarehencecongyclic.

But /FHA = /EH B sincethey areverticalangles,andsincethetwo quadrilaterals
ADHB andBDHE arecongclic, /BDE = /EHB and/ADF = /FHA since
they subtendequalarcsof thecircles. Thus/BDE = / ADF.

Figure13: Fagnanas Problem

With thelemmaabove, andwith asomeavhatmiraculousconstructionthe proof of the
maintheoremis not difficult. SeeFigure13.

Reflectthe original triangle A ABC acrossthe line BC forming atriangle AA’ BC.

Reflectthis oneacrossA’C forming anothertriangle AA’B'C. Continuein this way
for fivereflectionsasin thefigure.

Chaseangleso shav theline B” A” is parallelto B A. It is easyto show thereflections
of thetriangleconnectinghefeetof thealtitudes(the onewith solid diamondvertices)
formsastraightline afterthereflections.Any othertriangle(lik e the onein thefigure
with dotteddiamondvertices)will notbereflectedio form a straightpath.

The beginningandendpointsof thesetwo paths(X to X" andY to Y") areequally
farapart,sincethey form a parallelogramlt is a parallelogramsince B” A” is parallel
to BA andthelength XY is thesameasthelengthX”Y"'. But thesolid-diamondpath
is astraightline, soany otherpathmustbelonger

Note thatthe two pathseachconsistof two copiesof the sidesof the pedaltriangles,
soclearlythe pedaltriangleconnectinghe baseof the altitudesis the shortest.

11



10 Proof: Ptolemy’s Theorem

The statemenbf Ptolemys theoremcontainsa bunch of productsof lengthsof sey-

ments:
AB-CD +BC-DA = AC - BD. (1)

Generally to prove theoremdik e this we needto cornvert thoseproductsinto ratios,
andthenusesimilar trianglesor someothertechniqueto establishtheratios.

It turnsout notto mattermuchhow we start,but noticethatin equationl if we could
gettheratio AB/AC thatmight help. But AB and AC arenotin ary pair of similar
triangles,solet’s just constructa line that creates a pair of similar triangleswith the
sideAB in onecorrespondingo side AC' in theother

B A

Figure14: Ptolemys Theorem

In Figure 14, constructthe line from A outsidethe cyclic quadrilaterathatmakesthe
sameanglewith AD that AC doeswith AB andintersectsheline CD at H. Now we
have the similarity thatwe want. /BAD = /CAH sincebothareequalto /CAD
plus/BAC or /DAH whichwereconstructedo beequal.Since/ ABD and/ ACD
areinscribedin the samecircle, they arealsoequal,so by angle-anglesimilarity, we
know that AABD ~ NACH.
But theres anotherpair of similar triangles. Since /ABC and /CD A are opposite
anglesin acyclic quadrilateralthey aresupplementanyit is alsoobviousthat/C D A
and/HD A aresupplementaryso /ABC = /{HDA. Since/HAD = /CAB (by
construction)we have, againby angle-anglesimilarity, that AABC ~ AADH.
Finally, noticethat

CH =CD + DH. (2)

Fromthesimilaritiesof the pairsof triangles we have:
AC _CH  AD _DH
AB~ BD “"AB T BC
If we solve for DH andC H in equations3 and substitutetheminto equation2, we
obtain:

3)

AC -BD AD . BC
—ag Pt —

Whenwe multiply throughby AB we obtainPtolemystheorem.
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