
Four Points on a Cir cle
Tom Davis

tomrdavis@earthlink.net
http://www.geometer.org/mathcircles

October9, 2002

1 What is an “Inter esting” Theorem?

What makesa Euclideangeometrytheorem“interesting”? Thereareprobablya lot
of answersto this, but quiteoften it is whensomethingoccursthat is too lucky to be
a coincidence.For example,if you draw somediagramandtwo of the pointsof the
diagramlie ona line, thatis not interestingatall, sinceevery pairof pointslie onsome
line. But if three points lie on a line when they werenot definedto be on that line
in the first place,the situationis usually interesting. In fact, if you randomlyplace
threepointson a finite portion of a Euclideanplane,selectedin a uniform way, the
probabilitythatall threewill lie on thesameline is exactlyzero.

Similarly, if two non-parallellinesmeetat a point, that is not at all interesting,but if
threeor moredo, it maybevery interesting.

The samesort of ideaappliesto otherfigures. If two circlesin the planeintersectin
two points,or donot intersectat all, this is usuallynot interesting.But if they intersect
at exactly onepoint (they are tangent,in otherwords), the situationis usually very
interesting.

Webegin thisdocumentwith ashortdiscussionof sometoolsthatareusefulconcerning
four points lying on a circle, and follow that with four problemsthat canbe solved
usingthosetechniques.Thesolutionsto thoseproblemsarepresentedat theendof the
document.

2 Points on Cir cles

If two pointslie on a circle, thatis not interestingat all. In fact,for any two Euclidean
points,thereareaninfinite numberof circlesthatpassthroughbothof them.

Threepointsonacircle is alsonot interesting.Unlessthethreepointshappento lie on
thesamestraightline (which hasprobabilityzeroof occurringby chance),they lie on
a circle. To seethis, constructtheperpendicularbisectorsof thesegmentsjoining any
two pairsof thepoints.Sincethepointsdonot lie in a line, theperpendicularbisectors
arenot parallel,andmustmeetsomewhere. Any point on the perpendicularbisector
of two points is equidistantfrom thosepoints,so the point at the intersectionof the
two perpendicularbisectorsis equidistantfrom all threepoints.Thusa circle centered
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at this intersectionpassingthroughany oneof the threepointsmustpassthroughthe
othertwo.

Sincethefirst threepointsdefinea circle, it is almostimpossiblefor the fourth point
to lie on thatcircle by chance.Thusif, in a diagram,four pointsthatarenot in some
sensedefinedto lie onacircledo lie onacircle, thatis aninterestingoccurrenceandit
mayindicatethataninterestingtheoremcanbefound.

Obviously, if five,six, or morepointslie onacircle,thatmaybeevenmoreinteresting,
andonetheoremwe will examinehereconcernsthefamous“nine point circle” where
ninepointsrelatedto any triangleall lie on thesamecircle. SeeSection4.1.

3 Cir cle Preliminaries
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Figure1: CentralAngle andInscribedAngle

There’sbasicallyonetheoremwe needto know to show a largenumberof interesting
thingsaboutsetsof pointsonacircle. Arcsof circlesaremeasuredby thecentralangle.
In theleft partof Figure1,

�
is thecenterof thecircle,andthemeasureof thearc ���

is thesameasthemeasureof thecentralangle.Botharecalled � in thefigure.

Theright partof Figure1 illustratesthetheorem.If anangleis inscribedin thecircle
thatintersectsthecircle in anarcof size� , thenthemeasureof theangle � ����� is � � 	 .
This is not obvious,andrequiresproof,but it is provedin everyhigh schoolgeometry
course.

We mustbea little carefulhere.In thefigure,thetwo points � and � reallydetermine
two arcs—inthis casea shortonethat’sperhaps
 � � in thefigure,therestof thecircle
(which is about 
 � � � in the figure). If thereis any question,we will namethe two
pointsthatboundthearcin suchawaythatthearcis thepartof thecircle from thefirst
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to thesecondin acounter-clockwisedirection.Thusin thefigure,arc ��� is about� � �
andarc ��� is about� � � � .
If, in Figure1, thepoint � wereonthearc ��� (thesmallone),theangle � ����� would
measurehalf of about� � � � .
This basicfact aboutanglesinscribedin a circle and the fact that a completecircle
contains� � � degrees,allowsusto provea widevarietyof interestingtheorems.
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Figure2: Cyclic Quadrilateral

Sincewe will be consideringthe casewhere four (or more) points lie on a circle,
considersomeeasy(andnot soeasy)resultsdisplayedin Figure2. In thatfigure, the
four vertices� , � , � , and � lie onacircle in order. Wewill let � , � , � , and � represent
thelengthsof thesegments��� , ��� , ��� , and � � , respectively.������� is aquadrilateralthatis inscribedin acircle,andis calledacyclic quadrilateral
(or sometimesa concyclic quadrilateral).

The most interestinganduseful result is this: � �����"!"� ��� �$#%� & � � (andalso,
of course, � �'���(!)� �����*#$� & � � ). This is easyto see,since � ����� is half the
measureof arc ��� (measuredcounterclockwise)and � ��� � is half the measureof
arc ��� . But arcs ��� and ��� togethermake the entirecircle, or � � � � , so the two
oppositeanglesin any cyclic quadrilateralaresupplementary, or in otherwords,addto
makethestraightangle.

It is not difficult to seetheconverse;namely, thatif two oppositeanglesin aquadrilat-
eraladdto � & � � , thenthequadrilateralis cyclic.

A very importantspecialcaseof this is whenthetwo oppositeanglesareright angles,
or + � � . This happensoften,andwhenit does,theresultingquadrilateralis cyclic.

3.1 Ptolemy’s Theorem

Thereis a very easyway to determinewhetherfour pointslie on a circle if you know
thedistancesbetweenthem.Conversely, if youknow thatfour pointslie on any circle,
theformulabelow, known asPtolemy’sTheorem,holds.
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In Figure2, if: ,�-). /�0"12-�/3. 0',345,�/3. -�0
thenthefour points

,
,
-

,
/

, and
0

all lie ona circle.

We will proveonedirectionof this resultin Section10.

3.2 Brahmagupta’s Formula

Again, we will not prove this resultheresinceit is not usedin theproblemset,but it
alsorelatesto cyclic quadrilaterals.Theusualproof is straightforward,but involvesa
lot of patiencewith trigonometricmanipulationsthat begin with the observation that
thelawsof sinesandcosinesapplyto varioustrianglesin thefigure.

Brahmagupta’s formula providesa methodto calculate 6'7 ,�-�/�0'8 , the areaof the
cyclic quadrilateral

,�-�/�0
. Hereit is:

If
,�-�/�0

is a cyclic quadrilateral,whosesideshave lengths 9 , : , ; , and < , then if= 4 7 9 1 : 1 ; 1 < 8 > ? is thesemiperimeter, its areais givenby:

6'7 ,�-�/�0 8@4)A 7 =�B 9 8 7 =�B : 8 7 =�B ; 8 7 =�B < 8 C

Notice that from Brahmagupta’s formula it is trivial to deduceHeron’s formula for
the areaof any triangle(rememberthat every triangleis concyclic). Hereis Heron’s
formula for the areaof a triangle D ,�-�/ having sidesof lengths 9 , : , and ; and
semiperimeter= 4 7 9 1 : 1 ; 8 > ? :

6'7 D ,�-�/�8@4)A = 7 =�B 9 8 7 =�B : 8 7 =EB ; 8 C

Thederivationof Heron’sformulais obvious:pick apoint
0

near
/

of D ,�-�/ , but on
its circumcircle.Thenlet

0
approach

/
. Theterm 7 =�B < 8 in Brahmagupta’s formula

will tendtoward = , andthequadrilateral
,�-�/�0

will becomemoreandmorelike the
triangle D ,�-�/ .

4 Problems

4.1 The Nine Point Cir cle

This is perhapsoneof the mostamazingtheoremsin Euclideangeometry. It states
that if you begin with any triangle,the ninepointsconsistingof the midpointsof the
sides(points

,�F
,
-�F

, and
/�F

in Figure3), thefeetof thealtitudes(points G , H , and I ),
andthemidpointsof thesegmentsfrom theorthocenterto theverticesof the triangle
(points J , K , and L ), all lie on thesamecircle.

(TheorthocenterM is theintersectionof thethreealtitudes.)

For theproof,seeSection5.
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Figure3: NinePointCircle

4.2 Miquel’ s Theorem

Figure4: Miquel’sTheorem

Figure 4 shows two examplesof Miquel’s theorem. Chooseany triangle and then
choosea point on eachof its sides. Constructcirclespassingthrougheachvertex of
thetriangleandthroughthepointson thetwo adjacentsides.All threeof thosecircles
meetat apoint.

Thefigureshows that the resultseemsto hold in two cases,but notethat thepoint of
intersectionof thethreecirclesmaynot lie within theoriginal triangle.

In fact, the theoremeven holds if the points on the sidesof the triangle do not lie
betweentheverticesof thetriangle.

For theproof,seeSection6

4.3 Napoleon’s Theorem

Napoleon’sTheorem(seeFigure5) saysthatgivenany triangle,if youerectequilateral
triangleson the edgesof that triangle,all pointing outward, that the centersof those
threetriangleswill form anequilateraltriangle.In thefigurethreecirclesaredrawn to
givea hint asto how theproof shouldproceed.Noticethatthosethreecirclesall seem
to meetat a point.
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Figure5: Napoleon’sTheorem

For theproof,seeSection7

4.4 The SimsonLine
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Figure6: TheSimsonLine

Let N beany point on thecircumcircleof O P�Q�R . From N , dropperpendicularsto
eachof thesidesof thetriangle.Show thatthepointsof intersectionof theperpendic-
ularswith thesidesall lie on a line calledtheSimsonLine. SeeFigure6

For theproof,seeSection8

4.5 Fagnano’sProblem

Fagnano’s problemis the following: Givenanacute-angledtriangle OSP�Q�R , find the
triangle with the smallestperimeterwhoseverticeslie on the edgesof O P�Q�R . In
Figure7, this trianglewith smallestperimeteris OST'U�V .

The answeris that it is the trianglewhoseverticesarethe feet of the altitudesof the
original triangle.Theeasiestproofusessomeinterestingargumentsinvolving notonly
circles,but reflectionsof theoriginal triangle.

For theproof,seeSection9
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Figure7: Fagnano’sProblem

5 Proof: Nine Point Cir cle
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Figure8: NinePointCircle

SeeFigure8. We will prove thatall ninepointslie on thecircle by first showing that
thesix points W�X , Y�X , Z , [ , \ and ] all lie on acircle. Theproof will usetheline W�Y
asthe baseof the triangle. But every trianglehasthreebases,andif we considerthe
line W�^ to thethebase,exactly thesameproof would show thatthepoints W�X , ^�X , _ ,Z , \ , and ` alsolie on the samecircle. Sincethesetwo circleshave threepointsin
common: W�X , Z , and \ , they mustbethesamecircle,andhenceall ninepointslie on
thesamecircle.

Since W�X and Y�X aremidpointsof the sidesof aSW�^�Y , we know that W�X Y�X�bSW�Y .
Similarly, since Z and [ aremidpointsof thesidesof aSW�cdY , Z�[3b�W�Y . But since
both Z�[ and W�X Y�X areparallel to the sameline W�Y , they areparallel to eachother:Z�[ebEW�X Y�X .
Usingthesamereasoning,since W�X and [ aremidpointsof ^�Y and cdY in a ^�cdY ,W�X [fbS^�c . If we look at a ^�cdW , repeatthe reasoningto show that Y�X Z*b ^�c .
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Since g�h i and j�h k areboth parallel to the sameline l�m , they areparallel to each
other. Thus j�h g�h i�k is a parallelogram.

But it is morethana parallelogram;it is a rectangle.Since l�m is partof thealtitude
of the triangle l�mon(j�g . Becausej�h k and i�k areparallelto perpendicularlines,j�h k2n5i�k . Thereforej�h g�h i�k is a rectangle.

Let p bethecenterof therectangle.Obviously p is equidistantfrom j�h , g�h , i , andk , soall four of thosepointslie on acirclecenteredat p .

In this circle, j�h i and g�h k arediameters.Sincethe lines i�q and ksr arealtitudes,t j�h q�i"u t g�h r�k2u5v w x . But theseright anglessubtendthediametersj�h i and g�h k ,
so q and r lie on thecircle centeredat p andpassingthroughpoints j�h , g�h , i , andk . Thuswehaveshown thatsix of theninepointslie ona circle.

As we saidabove, thereis no reasonto assumethat j�g is the only base,andusing
either j�l or l�g asbasewe canshow thatothersetsof six pointslie on circles,and
sinceeachsethasthreepointsin commonwith thetwo othersets,all ninepointslie on
thesamecircle.

6 Proof: Miquel’ s Theorem
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Figure9: Miquel’sTheorem

Theproof is fairly simple;seeFigure9.

Usingthelabelsin Figure9, begin by consideringonly two of thecircles—j�q�r andl�r�y . They will meetatsomepoint z , andourgoalwill beto show thatthepoint z
alsolieson thecircle g�q�y .

Constructlines y'z , q�z , and r�z , forming two cyclic quadrilateralsj�q�z)r andl�y'z)r . Sincethequadrilateralsarecyclic, weknow that
t q�j�r5{ t q�z)r)u)| } w x

andthat
t r�l�ye{ t y'z)r)u)| } w x . Wealsoknow that

t q�j�r~{ t r�l�ye{ t y'g�y�u| } w x sincethey arethethreeanglesof atriangle,andweknow that
t q�z)r�{ t y z)r�{t q�z)y(u5� � w x .

Apply a little algebrato thoseequationsto concludethat
t y'g�q3{ t q�z)y�u�| } w x .

If two oppositeanglesin aquadrilateraladdto | } w x , weknow thatit is acyclic quadri-
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lateral,sothepoints � , � , � and � all lie on a circle. Thusthethreecirclesmeetat
thepoint � .

7 Proof: Napoleon’s Theorem
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Figure10: Napoleon’sTheorem

Theproof of Napoleon’s Theoremis similar in somewaysto thepreviousproof. See
Figure10. We begin by constructingcirclesaroundthethreeequilateraltrianglesand
wewill show thatthey all meetat apoint.

In the figure, considerthe two circles ����� and ����� . In addition to meetingat� they will meetat anotherpoint � . Sincequadrilaterals������� and ������� are
cyclic, we know thatoppositeanglesin themaddto � � � � . Thus � �����)�3� �����"�� �����)�"� ���'�f�f� � � � . But the triangles � ����� and �S����� areequilateralso� �����5�"� ��� �)�5� � � . Thuswe canconcludethat � �����(�)� �����(�)� � � � .
Sincetheangles� ����� , � ����� , and � ����� addto makeafull � � � � , � �����3�)� � � � .
But thensince � �����5�)� �����"�(� � � � , quadrilateral������� is cyclic, sothethree
circlessurroundingtheexteriorequilateraltrianglesmeetin asinglepoint � . Not only
that,but thelines ��� , ��� , and ��� all meetat � � � � angles.

Thepoints � , � , and � arecentersbothof theequilateraltrianglesandof thecircles,
so the lines connectingthemareperpendicularto the lines ��� , ��� , and ��� . Thus� �s��� �(�"� �s��� �"�3� � � andsincethey addto � � � � , quadrilateral�s��� ����� is cyclic
and � ��� �s��� �5� � � ���"� � � � . Therefore� ��� �s�����3� � � . But thesameargumentcan
bemadeto show that � ��� �������)� ��� �������5� � � , so � ����� is equilateral.
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8 Proof: The SimsonLine

Thefollowing proof worksonly if � lies on thearcbetween� and   . If it is on one
of theotherarcs,renamethepointsappropriatelybeforebeginning.
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Figure11: TheSimsonLine

Sincethelinesdroppedfrom � areperpendicularto thesidesof thetriangle,they form
right angles,andit is easyto seein Figure11 that �)¡�¢ �� �¢ , �)¡�¢ ��¢   and �) �¢ ¡���¢
aresetsof concyclic points. Obviously ¡����)  is alsoconcyclic, since � is on the
circumcircleof £ ¡���  .

Since¡����)  and �) �¢ ¡���¢ areconcyclic setsof points,both ¤ ���)  and ¤  �¢ �)��¢
aresupplementaryto ¤ ��¡�  . Thereforethey areequal.Since ¤ ���) "¥(¤ ���)��¢ ¦¤ ��¢ �)  and ¤  �¢ �)��¢�¥%¤ ���)��¢�¦(¤  �¢ �)� we find that ¤ ��¢ �) %¥§¤  �¢ �)� .
But sinceeachof thoseangleslies in a circle, ¤  �¢ �)��¥�¤  �¢ ¡�¢ � and ¤ ��¢ �) f¥¤ ��¢ ¡�¢   .

Theequalityof thefinal pairof anglesprovesthatthepoints��¢ , ¡�¢ and �¢ arecollinear,
sinceequalverticalanglesareguaranteedat ¡�¢ .

9 Proof: Fagnano’sProblem
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Figure12: EqualAngles

To prove that the triangleconnectingthe feetof the altitudesof an acutetrianglehas
theminimumperimeter, wefirst needto provealemma.Wewill show thatthis“pedal”
triangle £S¨'©�ª in Figure12 makesequalangleswith the basesof the triangles. In
otherwords,weneedto show that ¤ ��¨ ©"¥)¤ ¡�¨'ª .
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We begin by consideringthetwo circlespassingthrough «�¬�­ and ®�¯�­ . It is clear
thatbothpassthrough° , theorthocenterof ±S«�®�² sincebothquadrilaterals«�­ °d®
and ®�­'°d¯ containtwo oppositeright anglesandarehenceconcyclic.

But ³ ¬�°d«)´�³ ¯�°d® sincethey areverticalangles,andsincethetwo quadrilaterals«�­ °d® and ®�­ °d¯ areconcyclic, ³ ®�­ ¯�´�³ ¯�°d® and ³ «�­ ¬�´�³ ¬�°d« since
they subtendequalarcsof thecircles.Thus ³ ®�­ ¯"´)³ «�­'¬ .
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Figure13: Fagnano’sProblem

With thelemmaabove,andwith asomewhatmiraculousconstruction,theproofof the
maintheoremis not difficult. SeeFigure13.

Reflectthe original triangle ±S«�®�² acrossthe line ®�² forming a triangle ± «�µ ®�² .
Reflectthis oneacross«�µ ² forming anothertriangle ± «�µ ®�µ ² . Continuein this way
for five reflections,asin thefigure.

Chaseanglesto show theline ®�µ µ «�µ µ is parallelto ®�« . It is easyto show thereflections
of thetriangleconnectingthefeetof thealtitudes(theonewith soliddiamondvertices)
formsa straightline afterthereflections.Any othertriangle(like theonein thefigure
with dotteddiamondvertices)will not bereflectedto form a straightpath.

Thebeginningandendpointsof thesetwo paths( ¶ to ¶~µ µ and · to ·�µ µ ) areequally
farapart,sincethey form a parallelogram.It is aparallelogramsince®�µ µ «�µ µ is parallel
to ®�« andthelength¶~· is thesameasthelength¶~µ µ ·�µ µ . But thesolid-diamondpath
is astraightline, soany otherpathmustbelonger.

Note that the two pathseachconsistof two copiesof the sidesof the pedaltriangles,
soclearlythepedaltriangleconnectingthebasesof thealtitudesis theshortest.
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10 Proof: Ptolemy’sTheorem

The statementof Ptolemy’s theoremcontainsa bunchof productsof lengthsof seg-
ments: ¸�¹)º »�¼"½¾¹�»3º ¼'¸3¿5¸�»3º ¹�¼dÀ

(1)

Generally, to prove theoremslike this we needto convert thoseproductsinto ratios,
andthenusesimilar trianglesor someothertechniqueto establishtheratios.

It turnsout not to mattermuchhow we start,but noticethat in equation1 if we could
get theratio

¸�¹'Á ¸�»
thatmight help. But

¸�¹
and

¸�»
arenot in any pair of similar

triangles,so let’s just constructa line that creates a pair of similar triangleswith the
side

¸�¹
in onecorrespondingto side

¸�»
in theother.
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Figure14: Ptolemy’sTheorem

In Figure14, constructthe line from
¸

outsidethecyclic quadrilateralthatmakesthe
sameanglewith

¸�¼
that

¸�»
doeswith

¸�¹
andintersectstheline

»�¼
at Â . Now we

have the similarity that we want. Ã ¹�¸�¼*¿ Ã »�¸ Â sinceboth areequalto Ã »�¸�¼
plus Ã ¹�¸�» or Ã ¼'¸ Â whichwereconstructedto beequal.Since Ã ¸�¹�¼ and Ã ¸�»�¼
areinscribedin the samecircle, they arealsoequal,so by angle-anglesimilarity, we
know that Ä ¸�¹�¼�Å Ä ¸�» Â .

But there’s anotherpair of similar triangles. Since Ã ¸�¹�» and Ã »�¼ ¸ areopposite
anglesin a cyclic quadrilateral,they aresupplementary. It is alsoobviousthat Ã »�¼ ¸
and Ã Â ¼ ¸ aresupplementary, so Ã ¸�¹�»f¿ Ã Â ¼ ¸ . Since Ã Â ¸�¼%¿ Ã »�¸�¹ (by
construction),we have,againby angle-anglesimilarity, that Ä ¸�¹�»)Å Ä ¸�¼ Â .

Finally, noticethat » Â ¿e»�¼"½2¼ Â À (2)

Fromthesimilaritiesof thepairsof triangles,we have:¸�»¸�¹ ¿ » Â¹�¼ÇÆ È�ÉsÊ�ËÊ�Ì
¿ Ë�ÍÌ�Î

À
(3)

If we solve for
¼ Â and

» Â in equations3 andsubstitutetheminto equation2, we
obtain: ¸�»3º ¹�¼¸�¹ ¿5»�¼"½ ¸�¼"º ¹�»¸�¹ À
Whenwemultiply throughby

¸�¹
we obtainPtolemy’s theorem.
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