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Abstract

Euler’'s theorem is a nice result that is easy to investigatie simple models from Euclidean ge-
ometry, although it is really a topological theorem. Onehaf advantages of studying it as presented
here is that it provides the student many exercises in meistalization and counting.

1 TheCube

Figure 1: Cube

We will begin not with the simplest, but with what is probality most familiar example of a polyhedron
for most students: the cube (see Figure 1). Here, as well a®st of the examples in this article, we
want to count the number of faces, edges, and vertices indly@dron. The faces are the flat regions,
of which a cube hag. The edges are the line segments between pairs of faces ézhesb2) and the
vertices are the “corners” or the points of intersectiorhef¢dges, and a cube Hasf those.

Surprisingly, even the cube is complex enough that somelpeoay get these numbers wrong, so it is
worthwhile to count the features carefully, and especi@lthink of counting methods that guarantee a
complete and accurate count. As always in counting, it isibgsu can count the same things in different
ways since this provides a check of your answer.

Itis useful to have physical models of some of the objectd aseexamples here, especially at first, when
you are getting used to counting the features. It is, howammonderful visualization exercise to try to
make these counts in your head. In Appendix B there are cutbat can be used to construct most of the
models we consider here.

To count the faces of a cube, orient it so that you are lookirayface, and so that two of the faces are
parallel to the floor. There are three kinds of faces: topdot left/right, and near/far, making a total of
6.

To count the vertices, there are two sets: four around théatmgpand four around the bottom, for a total
of 8.

Counting edges is the most difficult, and there are a few wagotit. Notice that there arearound the
top, 4 around the bottom, antl connecting the top and bottom. Alternatively, there aperpendicular
to the floor,4 whose extensions would pass though your body, 4ttt go right and left.

The results for the cube is this: i, £ andV represent the number of faces, edges, and vertices, we have:
F =6, FE =12 andV = 8. On a separate piece of paper (or off to the side of the blaakhid you're



presenting this to a class), begin to make a table that lak&gHis with blank space available for a few
additional entries. Leave space for one additional columthe right:

| Object| Faces ) | Edges £) | Vertices {) | |
Cube 6 12 8

Figure 2: Two Parallelepipeds and a Distorted Cube

Before continuing, it is useful to make a couple more obs@mwa. First, note that there is nothing special
for our purposes about the normal cube in Figure 1 where @lsitles and angles are the same. Figure 2
displays three other examples that are simply distortidtiseocube, but which contain the same number
of faces, edges, and vertices. In fact, in the rightmost gtawr that figure, the faces are not even flat.

Second, here is another method to count the features. Foutles this method seems a bit clumsy, but
for some of the solids we will examine later, this method castly simplify the counting.

Suppose we know that the cube lédaces. Imagine a model of the cube made of paper, and withr afpai
scissors, cut the cube into pieces so that each of the orfgires is now a square of paper. After cutting,
there are squares, each of which hagdges, so there afex 4 = 24 edges in all. But notice that each
time you cut a single edge on the original cube, it became tigegin the collection of cut squares: one
on each of the two squares that were originally joined atelge. Thus, your count @ft edges includes
each original edge twice, so the original edge count must baer24/2 = 12 edges.

Count the vertices similarly. After the cube is cut iitequares, each hdsrertices for a total 06 x 4 =
24. In the original cube each vertex before cutting will lie & tcorners of three squares. Thus each
original vertex appears three times in the cut version, s®tkginal number of vertices wad /3 = 8.

2 TheTetrahedron

Figure 3: Tetrahedron

The simplest polyhedron is the tetrahedron illustratedigufe 3. The only reason we considered the
cube first is that the cube is far more familiar to most people.

Inspection of the tetrahedron givés= 4, £ = 6, andV = 4, but it is worthwhile to find alternative
counting methods. (The name “tetrahedron” itself givesyamrze of the answers—“tetra” means “four”



and “hedron” means “faced”.)

With one triangular base parallel to the floor and the tip upcan count the vertices around the baje (
plus the tip to gel/ = 4. A similar argument counts the faces. There&aezlges around the base, &hd
connecting the tip to the base for a totalkof

Or cut the tetrahedron inté triangles as you did with the cube: The cut triangles contain3 = 12
vertices and 2 edges, but each edge is counted twice and each vertex thveg fjivingtl = 12/2 =6
andV =12/3 = 4.

Be sure to add the tetrahedron to your table, which shouldloolwlike this:

| Object | Faces f) | Edges £) | Vertices (/) |
Cube 6 12 8
Tetrahedron 4 6 4

3 An Egyptian Pyramid

Everyone can visualize an Egyptian pyramid. Try to countetiges, faces, and vertices mentally. Here,
we are only concerned with closed solids, so be sure to chergquare bottom as an additional face. If
your visualization is weak, a drawing appears in Appendikigure 24.

Be certain to add your results to the table. (The completblt tat the end of Section 4 contains the
pyramid data so you can check your work.)

4 The Octahedron

Figure 4: Octahedron

The name “octahedron” (“eight-faced”) gives away one ofdhewers immediately. The octahedron is
the8-faced polyhedron (“polyhedron” = “many-faced”) illustea in Figure 4. It looks like two Egyptian
pyramids with their bases glued together.

To count the features, hold the octahedron with a vertex uperd are obviously triangles in the top
half and4 in the bottom for a total 08. There aret vertices around the middle as well as one at the top
and bottom for a total of. Finally, there arel edges around the middle pldsonnecting to the top and

4 more connecting to the bottom for a totalloX.

Alternatively, cut the figure int8 triangles having a total &f x 3 = 24 edges an@4 vertices. The edges
are double counted, and the vertices are coutitedes each, so there a2¢/2 = 12 edges and4/4 = 6
vertices.

Our table of values now looks like this:

10r, if you've worked out the numbers for an Egyptian pyramid £ 5, E = 8 andV = 5), you can double those when
you glue two together, but edgesy vertices, an® faces disappear since the edges and vertices merge andatffiecys become
interior. ThisgivesF =2x5—-2=8,EF=2x8—4=12andV =2x5—4=6.



| Object | Faces ) | Edges F) | Vertices () |

Cube 6 12 8

Tetrahedron 4 6 4

Egyptian Pyramid 5 8 5

Octahedron 8 12 6
4.1 Duality

The octahedron is the dual of a cube. The dual of a convex pdlyim is obtained by placing a vertex
of the new (dual) polyhedron in the center of each face of tigiral polyhedron and if two faces of the
original polyhedron are joined by an edge, then the veriitdéise centers of those faces are joined by an
edge in the dual. Visualize a point in the center of each obtfexes of a cube connected as described
above, and you can see that the result will be an octahedron.

A property of dual polyhedra is that the dual of the dual is dhniginal polyhedron. The dual of the
octahedron is the cube. By the construction of the dual eawh if the original corresponds to a vertex
in the dual (the vertex placed in the center of the face), @uth &ertex in the original corresponds to a
face in the dual. (Why is this?) The number of edges in a palytreand its dual are always equal, since
a new edge is constructed for every edge connecting two fadbs original, so the counts for the dual
are the same as the counts in the original, but with the nuwiifaces and vertices interchanged.

Visualize the dual of a tetrahedron. Did you get a tetrahe@lMvhat is the Egyptian pyramid’s dual?

5 TheDodecahedron and | cosahedron

Figure 5: Dodecahedron/Icosahedron

Most people know that “tetra” means “four” and “octa” meamréght”, but fewer know that “dodeca”
means “twelve” and “icosa” means “twenty”. If you do, it'ssgato guess the number of faces of the
dodecahedron and the icosahedron, illustrated in Figure 5.

5.1 Dodecahedron

Here is the first case where counting the features is a bitditfiHold the dodecahedron with one face
parallel to the floor, and its opposite face will also be dat#éb the floor. From the top facé,other faces
hang down and from the bottorpthers “hang” up, making?2 total faces, as the “dodeca” tells us there
should be.

Counting vertices and edges can also be done from this coafign. There aré vertices around the top
and bottom, and each at the bottoms of the edges coming down from the top aroup the bottom for
a total of20 vertices.

There aréh edges around the top and bottofrgoing down from the top; coming up from the bottom,
and thel0 endpoints of those down-going or up-going edges are coadétt loop withl0 more edges
for atotal of5 + 5+ 5+ 5+ 10 = 30 edges.



The analysis “by scissors” is easier: Cut the figure iripentagons and you will hav@ x 5 = 60 edges
and60 vertices. After cutting, the edges in the original are eamiinted twice and the vertic&stimes,
giving 60/2 = 30 edges an@d0,/3 = 20 vertices.

Find other ways to count the faces, edges, and vertices afatiecahedron.

5.2 |lcosahedron

If you notice that the icosahedron is the dual of the dodedwtime you getF’ = 20, £ = 30 andV = 12.
(Remember that we simply need to reverse the vertex and tagg<in the dual.)

To do the scissors analysis, you first need to count the fa@dent the icosahedron with one vertex up
and its opposite down. There asefaces touching the top and bottom vertices, as well as a fiirig) o
around the middle (or visualize one setgbointed “teeth” going down and anothgpointing up). Thus
there are( total faces.

After cutting up the icosahedron with scissors, there2@re 3 = 60 vertices and0 edges in the resulting
triangles, where each edge is double counted and each iecmunted times. Thus there aG¥ /2 = 30
edges an@0/5 = 12 vertices.

Try to count the number of vertices and edges directly.

In any case, if we add this data to our table, we obtain:

| Object | Faces f) | Edges £) | Vertices () |
Cube 6 12 8
Tetrahedron 4 6 4
Egyptian Pyramid 5 8 5
Octahedron 8 12 6
Dodecahedron 12 30 20
Octahedron 20 30 12

Before reading on, take a look at all the data in this tabless®lif you can find any numerical relation-
ships among the numbers in each row.

6 Euler’'sTheorem

There is enough numerical information in the table at the@rte previous section to find an interest-
ing relationship among the numbels £ and V. If you have not yet done so, please try to find that
relationship yourself. (Hint: it is a linear relationship.

Another hint is this: Because every one of our figures has Hfiduae, the values of’ andV must enter
the relationship in the same way. In other words, any eqnathw obtain connecting the values Bf £
andV must remain the same F andV are interchanged so an equation liKe- 3V — 5F = 11 cannot
hold since interchanging andV would giveV + 3F — 5F = 11.

With these hints and a little playing around, you should whtiae equation known as Euler’s theorem:

F-E+V =2 1)

Obviously we do not yet have a proof (or even a complete stenérf the theorem—are there any
conditions the polyhedron must satisfy to guarantee thé wfithe theorem?) We simply have counted
the number of faces, edges, and vertices of 6 polyhedra aticeddhat the relationship displayed in
Equation 1 holds for all of them.

Although the scientific method can never prove anythingait certainly be applied to mathematics to
increase our confidence in the truth of a proposed theorenv.thiat we think we have a formula relating
F, E, andV, let us verify that it holds in at least a few other cases.



6.1 Cylinders(or Prisms)

Figure 6: Pentagonal and Octagonal Cylinders

Figure 6 illustrates both a pentagonal and an octagonaldsti They are constructed by “extruding” a
base that is either a pentagon or an octagon to make a solid.

The features of both are easy to count. For the pentagoriatiey| there aré faces around the outside
and2 on the top and bottom for a total @f There ares x 2 = 10 edges around the top and bottom &nd
more connecting the top and bottom for a total 6f Finally, there aré vertices on both top and bottom
for a total of10. ThusF =7, E=15andV =10. F— E+V =7 — 15+ 10 = 2, so our proposed

theorem still seems to hold.

Similar reasoning for the octagonal cylinder gives= 10, £ = 24 andV = 16. F — E+V =
10 — 24 4 16 = 2, giving one more data point.

Why not add an infinite number of data points? Let's work oettumbers for a cylinder with sides.
The reasoning is identical: There arer 2 faces,3n edges, andn vertices.F — E+V = (n +2) —
3n+2n=3n+2—3n=2.

What is the dual of an-sided cylinder?

6.2 General Pyramids (or Cones)

Figure 7: Generalized Pyramids

We solved this for an Egyptian pyramid with a square basewlkutan construct pyramids with any kind
of polygonal base. See Figure 7 for examples of pyramids wvittided andl 5-sided bases.

The analysis is similar to what we did in Section 6.1. It is agiexercise to do it yourself.

As above, it is easy to count the features for an infinite nunolbeases. Consider the situation where
our pyramid has an-sided base. There are+ 1 faces (the base plus thetriangular faces), there are
2n edges—n around the base andmore connecting the base to the tip, and therenafel vertices—n
around the base plus the tip. This=n + 1, E = 2n andV = n + 1. Euler’s theorem continues to
hold: F —E+V =(n+1)—-2n+(n+1)=2.

What is the dual of an-sided pyramid?



7 TheTruncated | cosahedron

Figure 8: Truncated Icosahedron (or Soccer Ball)

We will delay the proof of Euler’s theorem for one more segtibut if you wish, you can jump ahead.
This example is more difficult, and although it does give ormgerdata point, it is probably most useful
as an advanced exercise in counting. The mathematical nktine shape is a truncated icosahedron (an
icosahedron with the corners cut off), but it looks a lot like patterns on a soccer ball. See Figure 8.

Even counting the faces is difficult, but (particularly ifyare holding a model in your hands) it is not
too hard to see that there are pentagonal faces. There is one on top and one on the bottalrif an
you follow the points down from the top or up from the bottomgiery case you will arrive at another
pentagon. Thus there agentagons in the top half and anotléewn the bottom.

If you know it is an icosahedron with the vertices choppededich vertex chopped gives us a pentagon,
and there were none to begin with. An icosahedroniRagertices, so there must & pentagonal faces.

To count the hexagons, natice that each edge of each pentagbared with exactly one hexagon. But
each hexagon touches orlypentagons, so thE2 x 5 = 60 pentagon edges are used three at a time on
the hexagons, making)/3 = 20 hexagons.

Alternatively, there were originallg0 faces on our icosahedron before we started whacking offdhe c
ners, and none were eliminated,Zbremain afterwards, but the cutting converts triangles tabens.

The final count isl2 pentagons plug0 hexagons for a total of' = 32.

Now use the scissors. After cutting, there will b2 x 5 plus20 x 6 or 60 + 120 = 180 edges and
180 vertices among the cut pieces. Each edge in the originatbhpears on two pieces so there are
180/2 = 90 edges. As you can see in Figure 8, every vertex marks thesetgon of exactly faces, so
there ard 80/3 = 60 vertices. S& = 32, E = 90 andV = 60, so agairF — E+V = 32—-90+460 = 2.

For completeness, here is the final form of our table. If y@yresenting it in class, note that a final
column has been filled to illustrate the suim- E + V:

| Object | Faces f) | Edges €) | Vertices () [ F—E+V ]
Cube 6 12 8 2
Tetrahedron 4 6 4 2
Egyptian Pyramid 5 8 5 2
Octahedron 8 12 6 2
Dodecahedron 12 30 20 2
n-Cylinder n+2 3n 2n 2
n-Pyramid n+1 2n n+1 2
Truncated Icosahedron 32 90 60 2

8 A Proof of Euler’s Theorem

Before we prove the theorem, we had better state exactly ivbays:

Theorem 1 (Euler’s Theorem) The number of faces, F', edges, E, and vertices, V, of a simple polyhe-



dron arerelated by theformula F — £ + V = 2.

The term “simple polyhedron” in the statement of the theoadrove means a polyhedron that is in one
piece without holes. Obviously a polyhedron that consistetivo unconnected cubes would satisfy
F — E 4+ V = 4 since you would just double all the counts, but two uncoreetctibes do not constitute
a simple polyhedron.

Figure 9: Box with Hole (Donut?)

Similarly, the object illustrated in Figure 9 is not a simpldyhedron since there is a hole passing through
it. In this case it is not hard to determine ttfat= 16, E = 32 andV = 16, S0OF — E + V = 02,

The proof of Euler’'s theorem is topological. Imagine that golyhedra are not made of paper, but of
rubber that we can stretch as much as we want.

Figure 10: Stretched Cube (2 Versions)

Take any polyhedron and punch a hole in the middle of one d&éss. Now grab the edges of that hole
and pull and pull and pull until the hole is much bigger thaa thiginal piece of rubber. Doing this to
the cube, for example, will result in a figure something likattdisplayed in Figure 10. The vertices of
the original cube are displayed as tiny circles, and theelaitgle surrounding everything represents the
enormously stretched hole in one of the faces. For a cubege#sy to draw the stretched version where
all the edges remain straight lines as in the example on thedtienakes no difference to our argument,
however, if they are curved as illustrated by the exampléenight.

The vertices and edges remain vertices and edges. When wethedaces, we have to be sure to include
the one on the “outside”, since that is the one in which weailijt punched a hole. In any case, check
that in the stretched, flattened cube, theresdaees (including the outside on&)yertices, and 2 edges.

Draw a few more flattened versions of the other polyhedra we leaamined earlier in this paper and
then count the features and make certain they agree whigbrevious counts. In fact, a better definition
of a “simple polyhedron” is simply any polyhedron that carstretched out in this way to make a planar
diagram. Try to convince yourself that the box with a holet shiown in Figure annot be stretched out
from a single hole in any of its faces.

2|t turns out that an extended form of Euler’s theorem holdat(ive will not prove here) which states that for a polyhedsith
n “holes”, the correct formula i’ — E + V = 2 — 2n.
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Figure 11: Simple “Polyhedron”

The key to the proof is this. F@ny such figure, we can begin with the very simple diagram in Fedir
and convert it to the figure we desire simply by adding vestimeexisting edge segments or by adding
edge segments connecting two existing vertices.

The simple polyhedron consists of one vertex and one edgeecting it to itself. We can see that= 2
(remember the outside face), abid= F = 1, soF — F + V = 2. If we add a vertex to an existing
edge, bothE andV are increased by one $6— E + V remains unchanged. Similarly, adding an edge
connecting any two existing vertices adds one edge andetidd existing face into two parts, thus adding
one more face. If botlh’ and F are increased by one, again we find that £ 4+ V' remains unchanged.
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Figure 12: Simple “Polyhedron”

In Figure 12 we will illustrate the first few steps to conveigilie 11 to a distorted version of Figure 10.

In the upper left corner of the figure, a single additionalnpavas added to the edge of our simple
polyhedron. Next, in the center of the top row, a new edge wds@that connects the two vertices. On
the right side of the top row, two new vertices have been added on the newly drawn edge, and one
on the original edge.

In the lower left of Figure 12, those new vertices are corgrbatith a new edge. In the center of the lower
line, two new vertices and a new edge were added. Finallipaihawer right, the conversion to Figure 10
is completed with the addition of two new vertices and a negeed

Since every step was one of the two modifications guarantetzhte the expressiol — F + V un-
changed, since its initial value wasit will remain 2 though the complete transformation to the represen-
tation of a flattened cube, or to a flattened version of any @btiher polyhedra discussed in this article.
This proof seems a bit sloppy, but the main idea is there, taoan be modified to a rigorous proof of
Euler's theorem.



Similar ideas could be used to prove particular cases. Fample, if you knew that Euler’s theorem held
for the icosahedron, it's easy to show that it continues 1d far the truncated icosahedron in Section 7.
Each time you cut off a corner of the original icosahedron got off the old vertex and you introduce
one new face, five new edges and five new vertices. The net eleaud time t& — E + V is zero.

In Appendix A there are a few other examples of polyhedraybatcan use as exercises in counting, and
to verify that the formuld” — E + V' holds in a few additional cases.

Finally, in Appendix B contains a few triangles, squaresitpgons, and hexagons. Copy this sheet on
stiff paper, cut out the polygons and attach them togethéhbyabs to construct many of the examples
here. Better still, check out this web site:

http://www.korthalsaltes.com/

9 The Game of Criss-Cross

This game is another good way to introduce Euler's Theoretme iflea (I think) is due to Sam Van-
dervelde, and his writeup for the game can be found here:

http://wuw.mathteacherscircle.org/materials/crisscross.pdf

The idea is this: begin with a triangle formed with three datsl place some number of other dots inside
that triangle such that no three of the dots lie on a straigkt Players take turns choosing a pair of dots
(including the dots that formed the original triangle) amcheecting them with a straight line segment
such that each new segment does not cross any existing segrhergame ends when a player is unable
to make a move, and that player loses. The question is, divemitial configuration of dots inside the
triangle, which player wins?

A little experimentation will show that it doesn’'t mattervaghe dots inside the original triangle are
arranged; the only thing that matters is the original nunadfelots. If there are an even number of dots,
the first player wins; otherwise, the second player doeshdféd aren dots inside the initial triangle
(makingn + 3 total dots), then at the end of the game, there will3be+ 3 segments drawn, which
alternates even and odd=aséncreases.

At the end of the game, there will be only triangluar facescsiif any polygon with more sides remains,
a diagonal can be added to it. (We should probably call therextregion a triangle, since although it is
unbounded outside, the boundary it has consists of threnesgg.

There are a lot of ways to figure out the total number of segméates and edges is to imagine taking
scissors and cutting up a completed game into a collectidnanfgles. After cutting, each original edge
will be represented on two of the triangles, sdifrepresents the number of triangles, theén= 3F/2
represents the number of edges. If there wedots inside, then there afé = n + 3 vertices in the
completed graph. SincE — £ + V = 2, we have:

F—B3F/2)+(n+3)=2.
Solving for F' yields: F' = 2n + 2, and this means th& = 3n + 3, as stated above.

This is a very short description of the game and its solut@ee Sam Vandervelde’s article for suggestions
of how to use it in a classroom.

Following is a proof that for a game of Criss-Cross withoints inside the triangle will end witv+ 3 =
3(n + 1) edges, independent of knowing Euler’s theorem. It begirib with same observation that if
you were to cut a completed game into triangles with scisandsif you count the sheet of paper with
a triangular hole as another triangle, therifs the number of triangular faces aitlis the number of
edges, then:

3F = 2F,

since each triangle will have three edges, and each edgdevitounted twice; once each on the two
triangles on both sides of the edge.

10



What we are going to do is remove vertices inside the outendte one by one, and keep track of how
the number of regions (which we will call, that will include both triangles and more complex regions)
edges (which we will calE)) and vertices (which we will calV).

Figure 13: Typical end of game

The following analysis will apply to any diagram, but to foN along, consider the completed game
as illustrated in Figure 13 from a game that began with fivdices inside the initial triangle. In this
exampleV = 8 = 5 + 3 (three initial vertices plus the five vertices added insi¥$ also have” = 12
(remember to count the outside triangle), dne- 18.

Figure 14: Removing a point

Now we will remove vertices one at a time, but as an exampfgase we first remove the circled vertex
in the diagram on the left of Figure 14. When that vertex isoeed we will also remove all the edges
connected to it, which, on the left side of Figure 14, are thtedl lines. When that vertex and the
connected lines are removed, the figure is changed to thateonght of Figure 14.

When an internal vertex is removed, the number of interndlogs in the resulting figure is reduced by
1, but what happens to the number of edges and regions? Gilithis depends upon which internal

11



vertex is removed. In the original example, two of the vexdibaved connected edges, one hiaand one
has6. We happen to have selected the vertex wittonnected edges.

Using our concrete example, the number of edges removet&dl] but what happens to the number of
regions? (For our analysis, we consider “regions” to be atygmon, not necessarily a triangle, including
the surrounding outer region.) If we consider the removetexeas the center, th&edges coming out
from it divide the larger region inté sub-regions. When we remove the center vertex¢ af those
sub-regions disappear, but they are replaced by a singlerlaegion, so six are subtracted and one is
added.

There’s nothing special abo@f suppose that when the first vertex is removed, therd:aexiges con-
nected to it. Then after the removal, there willlhefewer edges, ank, — 1 fewer regionsk; sub-regions
are removed, antl larger region appears).

So let’s letVy, F; and I represent the number of vertices, edges and regions rargaifter a single
vertex withk; connected edges is removed. We have:

i = V-1
E, = E-k
L = F-Fk+1

But there is nothing special about removing the first veriéhen we remove the second, suppose that
there aré, edges connected to it. Again, there will be one fewer vektgfewer edges, ank, — 1 fewer
regions, yielding:

Vo = V=2
Ey = E—ki—ke=FE—(ki+ka)
F, = F—kl—k2+2=F—(/€1+k2)+2,

wherel,, E, andF; are the number of vertices, edges and faces remaining latsetond removal. The
same process can be repeatdimes (since there areinternal vertices) and we will have the following
sequence of formulas:

Vi=V—-1|FEi=FE—-k h=F—-k+1

Vo=V =2 | By =F — (k1 + ko) Fr=F— (ki1 +ko)+1
Vo=V =3 | E3=FE— (k1 + ko + k3) Fy=F— (k1 +ko+ks)+1
Vo=V—-n|E,=E—ki+- -~k | Fn=F—-—(ki+-+ky+n

Now, the nice thing about the final formula is that the qugnitit + k2 + - - - + k,, represents the total
number of internal edges since once all the internal vestice removed, all the internal edges must also
have been removed, leaving only the three edges connebtrqpints of the original triangle, or:

3 = E—(k1+ka+-+kn
E-3 = (ki+kat--+kn)

Similarly, after all the internal vertices have been renthvenly two regions remain: the inside and
outside of the original triangle. Mathematically:

2=F — (k1 + kot -+ k,) +n.
SinceE — 3 is the same ag + k2 + - - - + ky,) We can write the equation above as:

29=F—(E—3)+n. @)

Recalling thaBF = 2F, which we obtained by cutting the original figure into tri¢gegand counting the
resulting edges (each triangle has three, but each origige is counted twice in the cut-up version),

12



we'd like to combine this fact with Equation 2:

2 = F—(E-3)+n

6 = 3F-3(E—-3)+3n
6 = 2E—3E+9+3n
E = 3+ 3n,

which is what we were trying to prove. Thus if the number ofsjat is even, the number of edges will
be odd and vice-versa. So if the number of dots is odd, thepiinston wins, and if the number of dots is
even, the second person does.

10 Flattened polyhedra

This section is mostly a collection of drawings of some pelyta that are flattened as described in the
previous section. The first two examples are of a dodecahexh@ an icosahedron and are illustrated in
Figure 15. Note that the dodecahedron ha%losed faces, each withsides, and the “outside” is the
twelfth face, which also hassides. In the same way, the icosahedronl$e@nstead 0f20) closed faces,

all triangles, and the outside represents the twentieth fac

Figure 15: Flattened Dodecahedron and Icosahedron

A flattened version of the “soccer ball” from Section 7 apgear the left in Figure 16.

We have not examined this possibility yet, but another apgindo flattening a polyhedron would be to
cut a tiny hole that includes a vertex, and then to do thectieg. If you did this, the point that you

removed would behave like a “point at infinity” and the linesnecting to it would stretch out forever
from the main part of the figure. As an illustration of thiseghe drawing on the right in Figure 16. In
that figure, notice that there are sil “triangles”, wheres of them, on the outside, are infinite. All the
arrows at the ends of the lines will meet at the removed paimifaity. Figures such as this also satisfy
Euler’s theorem, at least if we count the point at infinity asther point. Otherwise it will appear to be
off by 1.

Finally, Figure 17 illustrates the invariance of Euler'sdnem under duality, as described earlier in Sec-
tion 4.1. The figure is basically a combination of the drawanghe left side of Figure 15 and the drawing
on the right in Figure 16. One has points indicated by smadhogircles and the other by filled squares.
There is a circle point in the center of every square polygwh\dce-versa, assuming, of course, that
there is circle at the “point at infinity”. One figure is compdsof solid line segments and the other of
dashed segments, and every solid segment intersectsye@netdashed segment and vice-versa. Thus
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Figure 16: A Flattened “Soccer Ball” and Icosahedron witto@mPat Infinity

the number of edges in both figures is the same. Similarlyygwaint in one figure corresponds to a face
in the other and vice versa.

Figure 17: Duality of the Dodecahedron and Icosahedron

11 Another Proof of Euler’'s Theorem

The following proof is due to Martin Isaacs, and is much moeadtiful than the one in the previous
section. Itis also interesting in that it actually proves @arengeneral version of Euler’s theorem and the
more general form makes the proof easier. It is based on ##atlan invariant that is preserved as you
remove edges from a figure. Isaacs’s proof works on more gefigures, which he called “scribbles”.
A scribble is any drawing of (possibly curved) lines and pesuch that:

e Every line segment (edge) has a vertex at each end. Notee adigment must have endpoints: a
circle with no points on it is not a valid part of a scribblene it has no endpoints. There is no
problem if a segment has the same endpoint at both ends, sdeawith a single vertex on it is a

valid piece of a scribble.
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Figure 18: A Simple Scribble

e Whenever two or more segments cross, there is a vertex attbsiing that separates all the crossing
edges into pieces.

Figure 18 illustrates a scribble that contahgertices,10 edges, and faces, where the entire exterior
is considered to be a single face. In this cage= 8, £ = 10 and F' = 4, so we have the usual:

F - FE+V =2, asitshould.

Figure 19: A More Complex Scribble

Isaacs, however, added the possibility that a scribbledooarisist of multiple “components”, as illustrated
in Figure 19. In that figure, there are four components, twavltith are single vertices. A “component”
is a set of vertices connected by edges. Two componentsfreedt if there is no connection by edges of
the vertices of one with the vertices of the other. In the gdern Figure 19, we havel = 12, £ = 11,

F =4, andC = 4, where ‘C” is the number of components.

Components are simply disconnected pieces of a scribble d@mponent could completely surround
another, so a circle with a point on it plus a single pointdedhe circle would be a scribble that consists
of two components (and two vertices, two faces, and one edge)

If you fool around with some examples (and at this point, & igery good idea to do so), it appears to be
the case that:
V—-E+F-C=1,

which is identical to our original version of Euler’s fornauh the case wher@ = 1. It has the additional
advantage of working for the empty scribble, since in thae¢a=V = E =0, butF' = 1.

One other scribble that will turn out to be very interestisghe case where the scribble consists of
nothing except for, say; vertices:V = n. Inthatcasef = 1, E = 0, C = V = n, and we have:
V—E+F-C=n-041-n=1,asitshould.

Isaac’s proof works as follows: If we begin with a scribbléwény degree of complexity (well, assuming
there are at most a finite number of vertices, edges and fabes)we can show that if any single edge
is removed from that scribble, the quantily= V' — E + F' — C'is invariant; in other words, the value
of @ before and after the removal of the edge remains the sameor@my scribble that we begin with,
although originally we don’t know the value 6f, we show that successively simpler scribbles have the
same value of), and when we eventually remove all the edges, we are leftavgribble that consists
only of vertices, and we know that all such vertex-only doléls satisf — E+ F — C = 1.

When we remove a single edge from a scribble, there are twastasonsider. First, the removal of the
edge might separate a single componentinto two. This withbease if there is no other edge connecting
the components. If the values for the original scribble Ere, F' andC, and the values for the new
scribble with the edge removed av&, E’, F' and(’, it is easy to see thatt’ = V, £’ = F — 1,

F' = FandC’ = C + 1. There are no vertices added or removed, one edge is remineedyumber
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of faces is the same, since the removed edge simply “sepatateoutside from itself, and there is one
more component, since removing the edge split its origioaimonent into two. Thus:

Q =V —-FE+F -C=V-(E-1)+F—-(C+1)=V—-E+F-C=Q,

so Q is invariant on removal of such an edge.

The other possibility is that the removal of the edge doessplit a component into two pieces, since
there is at least one other connection between the parthidicase)’ = V andE’ = E — 1 for the
same reasons as before. N6iv= C since there is no new component created, Bhé= F — 1, since
the edge that was removed had to separate two different fidesth sides of it were the “outside”, then
its removal would split the component. This time, we have:

Q=V-FE+F—-C=V-(E-1)+(F-1)-C=V-E+F-C=Q,

so( is again invariant on removal of this other type of edge arditoof is complete.

12 Application: Geodesic Domes

Figure 20: Uniform Triangle Subdivision

Geodesic domes were invented or at least popularized byrBinsker Fuller. They are composed only
of triangles, so they are rigid. The usual dome is constdubtetaking an icosahedron (see Figure 5),
dividing each triangular face into smaller triangles, ameht projecting the inner vertices from the center
of the icosahedron to the sphere in which the original icedatn could be inscribed. The resulting
figure is then cut in half, or approximately in half, in case thangles are divided into an odd number of
subtriangles, and the result is a geodesic dome. Figure@@sshow each triangle would be subdivided
into 22 = 4,32 = 9, or42 = 16 sub-triangles.

Figure 21: 2V and 3V Domes

Figure 21 shows the domes that result from subdividing egahgle into2? = 4 or 32 = 9 sub-triangles.
These are called, respectively, a 2V and a 3V dome.

If you look at every dome thus formed, it is obvious that theilébe preciselys vertices wheré edges
come together (or vertices of degrgesince at every subdivided vertex there will beedges coming
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together and the original icosahedron Ha&dvertices of degre&. Since only half are used in a dome,
there arel2/2 = 6 vertices of degres.

This is equivalent to saying that every sphere approximabefore cutting it in half, contains vertices
of orders.

What is perhaps somewhat amazing is that it is possible to &or infinte number of sphere-like figures
from triangles such that every vertex has dedree6, and not just by using the standard geodesic dome
design. Although the number of vertices of degégr such sphere-like objects can be almost anything,
there are always exacth2 vertices of degre&. Using Euler’s theorem this is fairly easy to prove.

Let V5 andVs represent the number of vertices in such a sphere-like bbfelegrees and6, respectively.

If we count all the outgoing edges, we obtaivi; + 6V5, but this counts every edge twice, so the total
number of edges is half thall = (5V; + 6V5)/2. The number of triangles adjacent to the edges is the
same:5V;5 + 6V4, but this triple-counts the triangles, since each will barded adjacent to each of its
vertices. Thug’ = (5V5 + 6V5)/3. The total number of vertices, of course, is jlist V5 + V.

Euler’s theorem tells us that:

Vs +6Vs  5Vs + 6V
2=V B4+ F=Vs4Vp— 220V 2V H0

2 3
A bit of algebra yields:
15Vs + 18V 10Vs + 12V,
2 = Vit Vi— 5 6 6
6 6
5Vs 6V
2 = Vs+Vog————
5+ Ve 6 6
2 = V5/6
12 = V.

If you look at the dual of this result, where instead of a stefmade of triangles we connect the centers
of all the triangles and use the centers as the new verticesdphere-like object made only of polygons
with 5 or 6 sides (like a soccer ball; see Figure 8), then there will kecttx 12 pentagons and an un-
known number of hexagons (in fact, any number of them othem tf. It is sort of fun to try to draw
figures like this: every vertex has three lines coming out,dhere are a prescribed number of hexagons:
0,2,3,4,...), and there are exactly2 pentagons. (Remember to count the outer pentagon or hejagon
Figure 22 illustrates examples with 3 and5 hexagons. The soccer ball has exagtiyhexagons and the
dodecahedron has

Figure 22:2, 3 and5 Hexagons Plus2 Pentagons

It is a fairly easy exercise to show that in a figure of this sath n hexagons and2 pentagons there
must be exactl20 + 2n vertices. This is useful to know if you are trying to draw one.
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13 Application: The Six-Color Theorem

A very famous theorem in mathematics states that for any iafcan be drawn on a plane (or on a
sphere), only four colors are required to paint the regiartgdch represent, say, countries) in such a way
that guarantees that countries sharing a boundary (naca jpsint) are of different colors. At the time of
this writing, the only proof of this theorem is based on thépoitiof a computer program that checked
thousands of cases to which the general problem had beeca@ty mathematicians. So far there is not
an easily-understood proof.

It is much easier to prove that five colors are sufficient, bludtwe will show here is that, as a relatively
trivial result of Euler’s theorem, that six colors are suéit.

Map coloring can be reduced to a graph as follows: Place awartthe interior of every country and
draw an edge from that vertex to the vertices on the inteabadl countries that share an edge by passing
that line through the shared edge. This is a dual of the cpuméip, and is clearly planar. If colors can be
assigned to each vertex such that no two vertices connegted bdge have the same color then we have
a valid map coloring. What we will show here is that every plamap has a valid coloring using six or
fewer colors.

The proofis not too difficult, and we will begin with an outtinfollowed by the details.

The proofis based on induction on the size of the graph. I§theh ha$ or fewer vertices, it is obviously
true. Assume that we know the theorem is true for any graplzefless tham, and for any graph of size
n > 6 we will use Euler’s theorem to show that the graph must havezst one vertex of degréeor
less. If we remove that vertex, and all the edges coming ftowe will have a graph of size — 1 which
we know is6-colorable by the induction hypothesis. If we add the veded edges we just removed, the
new vertex has only or fewer neighbors, so there will be a color available fohattwill not conflict
with the other5 or fewer.

So all we really need to show is that any planar graph of 6ipe larger has a vertex with or fewer
neighbors. We will do this by using Euler’s theorem to shout fior any planar connected graph with

or more vertices thatl < 3V — 6. Then if we want to find the average degree of a vertex, we ddd al
the degrees and divide by the total number of vertices. Edgh bas two vertices at its endpoints, so the
average degreP is given by:

D= ( 3 deg(v))/V = (2E/V) < (2(3V — 6))/V =6 — 6/V.
veV

This number is strictly smaller thahso at least one vertex must have degree smaller@¢han

All we need to do, then, is to prove that for any planar coregcfraph with 3 or more vertices, that
E <3V —6.

If the graph has no cycles, thén= 1V — 1 < V. SinceV > 3then2V — 6 > 0. Add the inequalities
E <V ando <2V — 6 to obtainE < 3V — 6, so we are done in this case.

Figure 23: Face and Edge Example

If the graph does have cycles, consider the set of all passitige-face pairs, where the edge and the face
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touch. In Figure 23 there are four edges and two faégsq the “outside” face). In this example, all
the edges are adjacent g, but only E5, F5 and E, are adjacent to facg;. Thus the complete set of
edge-face pairs for this example would consist of the falhg/i7 pairs:

S ={(F1,F,),(E2, F»), (Es3, F»), (E4, F), (Ea, F1), (Es, F1), (Ey4, F1)}.

Note that each face must be adjacent to at I8&siges. If there were only two, that would mean that the
same two vertices were connected by multiple edges, and Weconnect faces that share a boundary
once. Thus the sef must consist of at leastF’ elements:|.S| > 3F, where|S| denotes the number of
elements irnS.

Each edge touches at most two faces, and in the example ineFR23uwe see thal; touches only one
face, sdS| < 2E. Combining this with the result in the previous paragrapihi:< 2F.

But if we multiply Euler’s formula by3 and substitute for the resultirsg”, we obtain:

P V-E+F
6 = 3V-3E+3F
6 < 3V -3E+2E
6 < 3V-E
E < 3V -6,

which is the result we needed to prove the six-color theorem.
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A Additional Figures
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Figure 24: Egyptian Pyramid, Cuboctahedron, Truncatedi@xatron
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Figure 25: Truncated Cubg;Sided Bipyramid, Pentagonal Antiprism
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Figure 26: Rhombic Dodecahedron, Rhombicuboctahedramchted Tetrahedron
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