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1 Introduction

Bin packing can refer to lots of different problems. Almost all of them turn out to be
harder than they seem. Some of them are simply interesting puzzles and some have
very important practical applications. In this article, we’ll concentrate mostly on what
seems like a very simple version, but we will begin with a few examples of problems
that are more puzzle oriented.

The basic idea is to find the best way to pack a bunch of objects (usually of dif-
ferent sizes) into bins (which are usually the same size). Wewill make a more precise
definiton later.

Bin packing problems are also sometimes called “knapsack problems”.

2 Bin Packing Puzzles

Here are a few examples of problems that are not quite the standard bin-packing prob-
lem, but are related, and are interesting in themselves.

2.1 Packing Grids with Dominoes

Let’s begin with a very simple problem that actually has a nice solution. Given a
checkerboard of size2 × n, in how many ways can it be tiled with1 × 2 dominoes?

As is almost always the case, the best approach is to gather some data by counting
the number of ways it can be done for various sizes of squares.

In Figure 1 shows all possible packings for a2 × n rectangle forn = 1, 2, 3, 4 and
5. As you can see, there are, respectively,1, 2, 3, 5 and8 solutions. These look a lot
like the Fibonacci numbers, and in fact, it’s reasonable to say that there is exactly one
way to fill a 2 × 0 grid: do nothing, so the numbers would be exactly the Fibonacci
numbers:1, 1, 2, 3, 5, 8, at least for the first6 of them.

Why would this be the case? The Fibonacci numbersFi are defined as follows:

F0 = 1

F1 = 1

Fn = Fn−1 + Fn−2, if n > 1.



Figure 1: Packing Dominoes in a2 × n Rectangle

It’s easy to check that the numbers of packings for a2 × n grid are0 and1 for
n = 0 andn = 1. What if n is larger than1? Look at the left-most edge. Either there
is a vertical domino (in which case there remains a2 × n − 1 grid to fill), or there are
two parallel horizontal dominoes (in which case there remains a2 × n − 2 grid to fill.
Thus if we think ofTi as representing the number of tilings withn dominoes, we have
exactly the same definition for the sequenceTi as we had for the Fibonacci numbers
Fi previously:

T0 = 1

T1 = 1

Tn = Tn−1 + Tn−2, if n > 1.

soTi = Fi for all i, and theTi must be just the Fibonacci numbers.
Try to solve the following problem: suppose you want to tile a1 × n grid with

dominoes, but this time you have two kinds of dominoes:1 × 2 and1 × 1. You can
approach the problem in the same way.

A more interesting and difficult problem is that of packingn × m grids with1 × 2
dominoes. Obviously, at least one ofn or m must be even for this to work. You may
find it interesting to consider just the3 × m problem, whenm = 2, 4, 6, . . . . Even
counting these for small values ofm is a little tricky. Try working out a few on your
own; the values form = 2, 4, 6, 8and10 appear in Section 4.

2.2 Packing Rectangles and Cubes In Two and Three Dimensions

Many puzzles basically require that you find a method to pack acertain number of
shapes into another shape. Some easy examples involve packing sets of squares of
unequal size into squares or rectangles. These sorts of problems are visually interesting,
and today a lot of solutions are known because computers can search for packings.

Figure 2 illustrates a solution to the following problem: Find a set of squares, all
of different sizes, that pack together to perfectly fill somelarger square. The illus-
trated solution uses 24 different squares to accomplish thetask. The solution is a little
disappointing since the tiling squares have somewhat oddball sizes.



Figure 2: Packing Squares in a Square

A much nicer problem would be to find a packing of squares with sides of lengths
1, 2, 3, . . . , n that completely fill a larger square. For this to happen, we would need to
find integersn andm such that:

12 + 22 + 32 + · · · + n2 = m2.

Are there any such solutions?
It is not hard to show that:

12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6
,

so we basically need to see when the quantityn(n + 1)(2n + 1)/6 is a perfect square.
This occurs ifn = 1 (which is not interesting) or whenn = 24:

12 + 22 + · · · + 242 = 702.

These are the only two solutions. As far as I know, the best packing achieved so far
uses all but the7 × 7 square, covering4851 of the4900 unit square areas, and nobody
knows if a better tiling exists. It has been shown that a perfect tiling is impossible. For
more information, see:

http://mathworld.wolfram.com/PerfectSquareDissection.html

There is also a great chapter on square packing in the bookIngenuity in Mathemat-
ics by Ross Honsberger.

Somewhat surprisingly, it is easy to show that there is no solution of any type that
will allow a packing of a rectangular box completely with more than two perfect cubes,



all of which are different sizes. If it were possible, the bottom of the box as a flat surface
would be packed with squares (which is certainly possible),but one of those squares
would be the smallest. It’s easy to check a couple of cases to see that this smallest cube
could not the on the edge of the bottom.

Thus this square would be covered by the smallest cube and that cube would be
surrounded by higher cubes, so the top of the smallest cube onthe bottom would have
to be tiled by smaller cubes. There must be a smallest of these, and the argument can
be repeated, showing that any tiling must require an infinitenumber of cubes.

3 The Standard Problem

Standard problem statement: What is the minimum numberk of identical bins, each
with capacityC needed to store a finite collection of indivisible items having weights
w1, w2, . . . , wn such that the sum of the weights of the items in each bin does not
exceedC?

Here are a couple of “obvious” theorems.

• If any wi > C, there is no solution. If allwi ≤ C, then there is a solution, and
that solution requiresn or fewer bins.

• The minimum number of bins is(
∑

wi)/C.

• Theorem if all the weights are the same?

Example: Bins of size 10; weights: 3, 6, 2, 1, 5, 7, 2, 4, 1, 9.
What are some approaches (possibly idiotic)?

• Next fit method: Start by placingw1 in the first bin. Keep examining items, in
order, and if they fit, continue to place in that bin. As soon asan item does not
fit, advance to the next bin, and so on.

How bad can this be? How good can it be? Is this completely idiotic?

• First fit method: Use the same method as before, except allow reexamination
of bins. In other words, for each new item, examine every bin,beginning with
the first, to see if the new item can be placed in that bin. Only if it will not fit in
any bins should we begin to fill a new bin.

Same questions as above. Can you think of other methods?

• Best fit method: same as first fit, but put each new item into a bin that comes
closest to filling it.

• Worst fit method: put new items into existing bin that leaves the most space
available in that bin.

Is this necessarily worse than the other methods?



• Almost worst fit method: almost the same as worst fit, but put the item in the
second-emptiest bin.1

The approaches above all assume that we have to handle the items in the order
received; for some applications this makes sense; for others, it doesn’t. Sometimes we
have all the items ahead of time and can sort the list (or pre-process it in various other
ways) and take advantage of knowing all the weights before webegin committing the
items to bins.

If we sort the items into decreasing (or, alternatively, increasing) order and then
apply the approaches above, which ones are likely to improveand which to get worse?

4 Grid Packing with Dominoes

The number of packings of a3 × 2n grid for n = 1, 2, 3, 4 and5 are3, 11, 41, 153 and
573, respectively. For more information, look at sequencesA099390 andA065072
from The On-Line Encyclopedia of Integer Sequences:

http://www.research.att.com/~njas/sequences/

5 Samples

The following plots show the results of various algorithms applied to the same set of
input data.

Figure 3: Best Fit

Figure 4: First Fit

1This method is actually better than worst fit, and can be proven to be so.



Figure 5: Worst Fit

Figure 6: Sort Down, then Best Fit

Figure 7: Sort Down, then First Fit

Figure 8: Sort Down, then Worst Fit

Figure 9: Sort Up, then Worst Fit


