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1 Knocking Down Dominoes

The natural numbers,N , is the set of all non-negative integers:

N = {0, 1, 2, 3, . . .}.
Quite often we wish to prove some mathematical statement about every member ofN . As a very simple example,
consider the following problem:

Show that

0 + 1 + 2 + 3 + · · · + n =
n(n + 1)

2
. (1)

for everyn ≥ 0.

In a sense, the above statement represents a infinity of different statements; for everyn you care to plug in, you get a
different “theorem”. Here are the first few:

0 = 0(1)/2 = 0

0 + 1 = 1(2)/2 = 1

0 + 1 + 2 = 2(3)/2 = 3

0 + 1 + 2 + 3 = 3(4)/2 = 6

and so on. Any one of the particular formulas above is easy to prove—just add up the numbers on the left and calculate
the product on the right and verify that they are the same. Buthow do you show that the statement is true forevery
n ≥ 0? A very powerful method is known as mathematical induction,often called simply “induction”.

A nice way to think about induction is as follows. Imagine that each of the statements corresponding to a different
value ofn is a domino standing on end. Imagine also that when a domino’sstatement is proven, that domino is
knocked down.

We can prove the statement for everyn if we can show that every domino can be knocked over. If we knock them over
one at a time, we’ll never finish, but imagine that we can somehow set up the dominoes in a line and close enough
together that when domino numberk falls over, it knocks over domino numberk + 1 for every value ofk. In other
words, if domino number0 falls, it knocks over domino1. Similarly,1 knocks over2, 2 knocks over3, and so on. If
we knock down number0, it’s clear that all the dominoes will eventually fall.

So a complete proof of the statement for every value ofn can be made in two steps: first, show that if the statement is
true for any given value, it will be true for the next, and second, show that it is true forn = 0, the first value.

What follows is a complete proof of statement 1:

Suppose that the statement happens to be true for a particular value ofn, sayn = k. Then we have:

0 + 1 + 2 + · · · + k =
k(k + 1)

2
. (2)

We would like to start from this, and somehow convince ourselves that the statement is also true for the next value:
n = k + 1. Well, what does statement 1 look like whenn = k + 1? Just plug ink + 1 and see:

0 + 1 + 2 + · · · + k + (k + 1) =
(k + 1)(k + 2)

2
. (3)
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Notice that the left hand side of equation 3 is the same as the left hand side of equation 2 except that there is an extra
k + 1 added to it. Soif equation 2 is true, then we can addk + 1 to both sides of it and get:

0 + 1 + 2 + · · · + k + (k + 1) =
k(k + 1)

2
+ (k + 1) =

k(k + 1) + 2(k + 1)

2
=

(k + 1)(k + 2)

P2
. (4)

showing that if we apply a little bit of algebra to the right hand side of equation 4 it is clearly equal to(k+1)(k+2)/2
— exactly what it should be to make equation 3 true. We have effectively shown here that if dominok falls, so does
dominok + 1.

To complete the proof, we simply have to knock down the first domino, domino number 0. To do so, simply plug
n = 0 into the original equation and verify that if you add all the integers from 0 to 0, you get0(0 + 1)/2.

Sometimes you need to prove theorems about all the integers bigger than some number. For example, suppose you
would like to show that some statement is true for all polygons (see problem 10 below, for example). In this case, the
simplest polygon is a triangle, so if you want to use induction on the number of sides, the smallest example that you’ll
be able to look at is a polygon with three sides. In this case, you will prove the theorem for the casen = 3 and also
show that the case forn = k implies the case forn = k + 1. What you’re effectively doing is starting by knocking
down domino number 3 instead of domino number 0.

2 Official Definition of Induction

Here is a more formal definition of induction, but if you look closely at it, you’ll see that it’s just a restatement of the
dominoes definition:

Let S(n) be any statement about a natural numbern. If S(0) is true and if you can show that ifS(k) is true then
S(k + 1) is also true, thenS(n) is true for everyn ∈ N .

A stronger statement (sometimes called “strong induction”) that is sometimes easier to work with is this:

Let S(n) be any statement about a natural numbern. To show using strong induction thatS(n) is true for alln ≥ 0
we must do this: If we assume thatS(m) is true for all0 ≤ m < k then we can show thatS(k) is also true.

The only difference between these two formulations is that the former requires that you get from the statement about
k to the statement aboutk + 1; the latter lets you get from any previous step (or combination of steps) to the next one.
Notice also that the second formulation seems to leave out the part aboutS(0), but it really doesn’t. It requires that
you be able to proveS(0) using no other information, since there are no natural numbersn such thatn < 0.

Using the second formulation, let’s show that any integer greater than 1 can be factored into a product of primes. (This
does not show that the prime factorization is unique; it onlyshows that some such factorization is possible.)

To prove it, we need to show that if all numbers less thank have a prime factorization, so doesk. If k = 0 or k = 1
we are done, since the statement of the theorem specifically states that only numbers larger than 1 are considered. Ifk
is prime, it is already a product of prime factors, so we’re done, and ifk = pq, wherep andq are non-trivial factors,
we know thatp < k andq < k. By the induction hypothesis, bothp andq have prime factorizations, so the product of
all the primes that multiply to givep andq will give k, sok also has a prime factorization.

3 Recursion

In computer science, particularly, the idea of induction usually comes up in a form known as recursion. Recursion
(sometimes known as “divide and conquer”) is a method that breaks a large (hard) problem into parts that are smaller,
and usually simpler to solve. If you can show that any problemcan be subdivided into smaller ones, and that the
smallest problems can be solved, you have a method to solve a problem of any size. Obviously, you can prove this
using induction.

Here’s a simple example. Suppose you are given the coordinates of the vertices of a simple polygon (a polygon
whose vertices are distinct and whose sides don’t cross eachother), and you would like to subdivide the polygon
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into triangles. If you can write a program that breaks any large polygon (any polygon with 4 or more sides) into two
smaller polygons, then you know you can triangulate the entire thing. Divide your original (big) polygon into two
smaller ones, and then repeatedly apply the process to the smaller ones you get.

The concept of recursion is not unique to computer science—there are plenty of purely mathematical examples. Here’s
one of the most interesting that you may wish to play with:

Ackermann’s function is defined as follows on all pairs of natural numbers:

A(0, n) = n + 1

A(m, 0) = A(m − 1, 1), if m > 0

A(m, n) = A(m − 1, A(m, n − 1)), if m, n > 0

Just for fun, try to calculateA(4, 2). (Hint: First figure out whatA(0, n) looks like for alln. Then figure out what
A(1, n) looks like, for alln, et cetera.)

4 Make Up Your Own Induction Problems

In most introductory algebra books there are a whole bunch ofproblems that look like problem 1 in the next section.
They add up a bunch of similar polynomial terms on one side, and have a more complicated polynomial on the other.
In problem 1, each term isk2. Just add them up fork = 0, 1, . . . , n.

Here’s how to work out the term on the right. Let’s do:

S(n) = 0 · 1 · 2 + 1 · 2 · 3 + 2 · 3 · 4 + · · · + n · (n + 1) · (n + 2).

Work out the value ofS(n) by hand for a few values ofn = 0, 1, 2, . . .. The first fewS(n) values are:

0, 6, 30, 90, 210, 420, 756, 1260.

Now list those in a row and take successive differences:
0 6 30 90 210 420 756 1260

6 24 60 120 210 336 504
18 36 60 90 126 168

18 24 30 36 42
6 6 6 6

0 0 0

Notice that other than the top line, every number on the tableis the difference between the two numbers above it to
the left and right. If all the terms in your sum are generated by a polynomial, you’ll eventually get a row of all zeroes
as in the example above. Obviously if we continued, we’d haverow after row of zeros.

Now look at the non-zero numbers down the left edge:0, 6, 18, 18, 6, 0, 0, . . ., and using those numbers, calculate:

S(n) = 0

(

n

0

)

+ 6

(

n

1

)

+ 18

(

n

2

)

+ 18

(

n

3

)

+ 6

(

n

4

)

+ 0

(

n

5

)

+ 0

(

n

6

)

+ · · · . (5)

Remember that
(

n
0

)

= 1,
(

n
1

)

= n,
(

n
2

)

= n(n− 1)/2!,
(

n
3

)

= n(n− 1)(n− 2)/3!,
(

n
4

)

= n(n− 1)(n− 2)(n− 3)/4!,
and so on.

Equation 5 becomes:

S(n) = 0 + 6n +
18n(n− 1)

2
+

18n(n − 1)(n − 2)

6
+

6n(n − 1)(n − 2)(n − 3)

24
.
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A little algebra converts the equation above to the simplified form below. Check that it works for the first few values
of n, and if you wish, construct a standard proof by induction that it works:

S(n) =
n(n + 1)(n + 2)(n + 3)

4
.

If you’re really ambitious, you can even show that the technique above (summing the coefficients in the left diagonal
by various factors of

(

n
k

)

) works, using induction.

Finally, using the example above as a model, notice the following pattern. What is the pattern, and can you prove it by
induction?

0 + 1 + 2 + · · · + n =
n(n + 1)

2

0 · 1 + 1 · 2 + · · · + n(n + 1) =
n(n + 1)(n + 2)

3

0 · 1 · 2 + 1 · 2 · 3 + · · · + n(n + 1)(n + 2) =
n(n + 1)(n + 2)(n + 3)

4

0 · 1 · 2 · 3 + 1 · 2 · 3 · 4 + · · · + n(n + 1)(n + 2)(n + 3) =
n(n + 1)(n + 2)(n + 3)(n + 4)

5

0 · 1 · 2 · 3 · 4 + 1 · 2 · 3 · 4 · 5 + · · · + n(n + 1)(n + 2)(n + 3)(n + 4) =
n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

6

5 Exercises

These problems are all related, and are all pretty mechanical. You may wish to do a few of them just to exercise
your algebra and a mechanical application of induction. Some involve a lot of grinding—they’re mechanical, not
necessarily easy!

Each series below hasn terms:

01 + 11 + 21 + 31 + · · · + (n − 1)1 =
n2

2
− n

2

02 + 12 + 22 + 32 + · · · + (n − 1)2 =
n3

3
− n2

2
+

n

6

03 + 13 + 23 + 33 + · · · + (n − 1)3 =
n4

4
− n3

2
+

n2

4

04 + 14 + 24 + 34 + · · · + (n − 1)4 =
n5

5
− n4

2
+

n3

3
− n

30

05 + 15 + 25 + 35 + · · · + (n − 1)5 =
n6

6
− n5

2
+

5n4

12
− n2

12

06 + 16 + 26 + 36 + · · · + (n − 1)6 =
n7

7
− n6

2
+

n5

2
− n3

6
+

n

42

07 + 17 + 27 + 37 + · · · + (n − 1)7 =
n8

8
− n7

2
+

7n6

12
− 7n4

24
+

n2

12

08 + 18 + 28 + 38 + · · · + (n − 1)8 =
n9

9
− n8

2
+

2n7

3
− 7n5

15
+

2n3

9
− n

30

6 Problems

1. Show that

02 + 12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
.
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2. LetFk be the Fibonacci numbers defined by:F0 = 0, F1 = 1, and ifk > 1, Fk = Fk−1 + Fk−2. Show that:

Fn−1Fn+1 = F 2
n + (−1)n

and that
n

∑

i=0

F 2
i = FnFn+1.

3. Show that:

1 +
1√
2

+
1√
3

+ · · · + 1√
n
≤ 2

√
n.

4. Show that:

2! · 4! · 6! · · · (2n)! ≥ ((n + 1)!)n.

5. Show that:

√

2 +

√

2 +

√

2 + · · · +
√

2 = 2 cos
π

2n+1
,

where there aren 2s in the expression on the left.

6. (Chebyshev Polynomials) DefinePi(x) as follows:

P0(x) = 1

P1(x) = x

Pn+1(x) = xPn(x) − Pn−1(x), for n > 0.

Show that

Pn(2 cos θ) =
sin(n + 1)θ

sin θ
.

7. Show that:

sin θ + sin 2θ + sin 3θ + · · · + sin nθ =
sin

(

(n+1)θ
2

)

sin
(

nθ
2

)

sin
(

θ
2

)

8. (Quicksort) Prove the correctness of the following computer algorithm to sort a list ofn numbers into ascending
order. Assume that the original list is

{x0, x1, . . . , xn−1}.

Sort(j,k) wherej ≤ k sorts the elements fromxj to xk−1. In other words, to sort the entire list ofn elements,
call Sort(0, n). (Note that Sort(j, j) sorts an empty list.)

Here is the algorithm:

• (Case 1) Ifk − j ≤ 1, do nothing.

• (Case 2) Ifk − j > 1, rearrange the elements fromxj+1 throughxk−1 so that the first slots in the list are
filled with numbers smaller thanxj , then put inxj , and then all the numbers larger thanxj . (This can be
done by running a pointer from the(k− 1)th slot down and from the(j + 1)th slot up, swapping elements
that are out of order. Then putxj into the slot between the two lists.)
After this rearrangement, suppose thatxj winds up in slotm, wherej ≤ m < k. Now apply Sort(j,m)
and Sort(m + 1, k).
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9. (Towers of Hanoi) Suppose you have three posts and a stack of n disks, initially placed on one post with the
largest disk on the bottom and each disk above it is smaller than the disk below. A legal move involves taking the
top disk from one post and moving it so that it becomes the top disk on another post, but every move must place
a disk either on an empty post, or on top of a disk larger than itself. Show that for everyn there is a sequence
of moves that will terminate with all the disks on a post different from the original one. How many moves are
required for an initial stack ofn disks?

10. (Pick’s Theorem) Given a simple polygon in the plane whose vertices lie on lattice points, show that the area of
the polygon is given byI + B/2− 1, whereI is the number of lattice points entirely within the polygon andB
is the number of lattice points that lie on the boundary of thepolygon.

A simple polygon is a closed loop of line segments whose only points in common are the endpoints of adjacent
pairs of segments. In other words, the edges of the polygon donot touch each other, except at the vertices, where
exactly two edges meet. Note that a simple polygon need not beconvex.

q q q q q q q q q

q q q q q q q q q

q q q q q q q q q

q q q q q q q q q

q q q q q q q q q

q q q q q q q q q

����������

`````̀ �
�
�
�
�
�

In the example above, the triangle includes 6 boundary points and 12 interior points, so its area should be
(according to Pick’s Theorem)12 + 6/2 − 1 = 14. You can check that this is right by noticing that its area is
the area of the surrounding rectangle (5 · 8 = 40) less the areas of the three surrounding triangles: (5/2, 15/2,
and 32/2). When we check, we get:40 − 5/2 − 15/2− 32/2 = 14.

11. (Arithmetic, Geometric, and Harmonic means) LetA = {a1, a2, . . . , an} be a set of positive numbers. We
define the arithmetic, geometric, and harmonic means (A(A), G(A), andH(A), respectively) as follows:

A(A) =
a1 + a2 + · · · + an

n
G(A) = n

√
a1a2 · · ·an

H(A) =
1

1
a1

+ 1
a2

+ · · · + 1
an

Show that
H(A) ≤ G(A) ≤ A(A).

In the solution section, the actual solution is preceded by acouple of hints.

12. (Catalan numbers) Givenn pairs of parentheses, LetTn be the number of ways they can be arranged in a valid
mathematical expression. For example, ifn = 3, there are 5 ways to rearrange the parentheses:

((())), (())(), ()(()), (()()), ()()(),

soT3 = 5. Let T0 = 1. Show that:

Tn =
1

n + 1

(

2n

n

)

.

Hint: Show that:
Ti+1 = TiT0 + Ti−1T1 + · · · + T0Ti.
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7 Solutions

1. If n = 0 we trivially have:
02 = 0(1)(1)/6.

Assume that the equation is true forn = k:

02 + 12 + · · · + k2 =
k(k + 1)(2k + 1)

6
. (6)

From this, we want to show that:

02 + 12 + · · · + k2 + (k + 1)2 =
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6

=
(k + 1)(k + 2)(2k + 3)

6
.

Begin with Equation 6 and add(k + 1)2 to both sides:

02 + 12 + · · · + k2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2.

Just do some algebra, and the proof is complete:

02 + · · · + (k + 1)2 =
k(k + 1)(2k + 1) + 6(k + 1)2

6

02 + · · · + (k + 1)2 =
(k + 1)(2k2 + k + 6k + 6)

6
=

(k + 1)(k + 2)(2k + 3)

6
.

2. Part 1:

First check forn = 1:
F0F2 = 0 · 2 = 0 = F 2

1 + (−1)1 = 1 − 1 = 0.

If we assume it is true forn = k, we have:

Fk−1Fk+1 = F 2
k + (−1)k. (7)

From this, we need to show that the equality continues to holdfor n = k + 1. In other words, we need to show
if we begin with Equation 7 we can show that:

FkFk+2 = F 2
k+1 + (−1)k+1.

SinceFk+2 = Fk + Fk+1, the equation above is equivalent to:

Fk(Fk + Fk+1) = F 2
k+1 + (−1)k+1,

or to
F 2

k + FkFk+1 = F 2
k+1 + (−1)k+1.

SubstituteF 2
k from the right-hand-side of Equation 7:

Fk−1Fk+1 − (−1)k + FkFk+1 = F 2
k+1 + (−1)k+1,
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or
Fk+1(Fk−1 + Fk) = F 2

k+1 + (−1)k+1 + (−1)k = F 2
k+1,

or
F 2

k+1 = F 2
k+1.

Part 2:

Forn = 0:

0
∑

i=0

F 2
i = F 2

0 = 0 = F0F1 = 0 · 1 = 0.

If it’s true for n = k:
k

∑

i=0

F 2
i = FkFk+1 (8)

we can addF 2
k+1 to both sides of Equation 8 to get:

k+1
∑

i=0

F 2
i = FkFk+1 + F 2

k+1 = Fk+1(Fk + Fk+1) = Fk+1Fk+2.

3. Forn = 1 we need to show that:
1 ≤ 2

√
1 = 2.

Assume the equation is true forn = k:

1 +
1√
2

+
1√
3

+ · · · + 1√
k
≤ 2

√
k.

To show that it is also true forn = k + 1, add1/
√

k + 1 to both sides:

1 +
1√
2

+
1√
3

+ · · · + 1√
k

+
1√

k + 1
≤ 2

√
k +

1√
k + 1

.

If we can show that

2
√

k +
1√

k + 1
≤ 2

√
k + 1

then we are done. Multiply both sides by
√

k + 1 and then square both sides to obtain:

4k(k + 1) + 4
√

k(k + 1) + 1 ≤ 4(k2 + 2k + 1).

Rearrange:
4
√

k(k + 1) ≤ 4k + 3,

and square both sides again:
16k2 + 16k ≤ 16k2 + 24k + 9,

which is obviously true.
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4. First show it is true forn = 1:

2 = 2! ≥ (2!)1 = 2.

Now assume it is true forn = k:

2! · 4! · 6! · · · (2k)! ≥ ((k + 1)!)k. (9)

If we multiply both sides of Equation 9 by(2(k + 1))!, we obtain:

2! · 4! · · · (2k)!(2k + 2)! ≥ ((k + 1)!)k(2k + 2)!

If we can show that the right hand side of the equation above islarger than((k + 2)!)k+1, we are done. Notice
that the term(2k + 2)! on the right hand side can be written:

(2k + 2)! = (2k + 2)(2k + 1)(2k) · · · (k + 3)(k + 2)!

This consists ofk terms, all greater thank + 2, multiplied by(k + 2)!, so

((k + 1)!k(2k + 2)! > ((k + 1)!)k(k + 2)k(k + 2)!

= ((k + 2)!)k(k + 2)! = ((k + 2)!)k+1.

5. Forn = 1 we have: √
2 = 2 cos

π

22
= 2 cosπ/4 = 2

√
2/2 =

√
2.

Now assume it’s true fork nested square roots:

√

2 +

√

2 +

√

2 + · · · +
√

2 = 2 cos
π

2k+1
.

If we add 2 to both sides and take the square root, the left handside will now havek + 1 nested square roots,
and the right hand side will be:

√

2 + 2 cos
π

2k+1
. (10)

We just need to show that the value above is equal to

2 cos
π

2k+2
. (11)

We know that for any angleθ we have:

cos θ =

√

1 + cos 2θ

2
. (12)

Substituteπ/2k+2 for θ in equation 12 and we can show the equality of the expressions10 and 11 above.

6. (Chebyshev Polynomials) First, let’s show that the formula holds forboth n = 0 andn = 1. (For this example,
we must do the proof for the first two cases, because to get to the casek + 1, we need to use the result fork and
for k − 1.)

Casen = 0:

1 = P0(2 cos θ) =
sin θ

sin θ
= 1.
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Casen = 1:

2 cos θ = P1(2 cos θ) =
sin 2θ

sin θ
=

2 sin θ cos θ

sin θ
= 2 cos θ.

Now assume that it’s true forn = k andn = k − 1, wherek > 0:

Pk(2 cos θ) =
sin(k + 1)θ

sin θ
, Pk−1(2 cos θ) =

sin kθ

sin θ
.

From the definition ofPk+1(x) we then have:

Pk+1(2 cos θ) = 2 cos θPk(2 cos θ) − Pk−1(2 cos θ)

= 2 cos θ
sin(k + 1)θ

sin θ
− sin kθ

sin θ

Use the trick thatkθ = (k + 1)θ − θ to rewrite the right hand side of the equation above as:

Pk+1(2 cos θ) =
2 cos θ sin(k + 1)θ − sin((k + 1)θ − θ)

sin θ

=
2 cos θ sin(k + 1)θ − cos θ sin(k + 1)θ + cos(k + 1)θ sin θ

sin θ

=
cos θ sin(k + 1)θ + cos(k + 1)θ sin θ

sin θ

=
sin(k + 2)θ

sin θ
.

7. To simplify the notation, let’s let:

Sk(θ) = sin θ + sin 2θ + · · · + sin kθ.

To prove the statement forn = 1 we need to check that:

sin θ = S1(θ) =
sin(2θ/2) sin(θ/2)

sin(θ/2)
= sin θ.

Assume it is true forn = k:

Sk(θ) =
sin (k+1)θ

2 sin kθ
2

sin θ
2

.

SinceSk+1(θ) = Sk(θ) + sin(k + 1)θ, we have:

Sk+1(θ) =
sin (k+1)θ

2 sin kθ
2 + sin(k + 1)θ sin θ

2

sin θ
2

Now, using the fact thatsin(k + 1)θ = sin 2((k + 1)θ/2) and that for any angleγ, sin 2γ = 2 sinγ cos γ:

Sk+1(θ) =
sin (k+1)θ

2 sin kθ
2 + 2 sin (k+1)θ

2 cos (k+1)θ
2 sin θ

2

sin θ
2

Sk+1(θ) =
sin (k+1)θ

2

(

sin kθ
2 + 2 cos (k+1)θ

2 sin θ
2

)

sin θ
2
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Now use the trick thatsin(kθ/2) = sin((k + 1)θ/2 − θ/2) and expand it as the sine of a sum of angles:

Sk+1(θ)=
sin (k+1)θ

2

(

sin (k+1)θ
2 cos θ

2−cos (k+1)θ
2 sin θ

2 +2 cos (k+1)θ
2 sin θ

2

)

sin θ
2

Sk+1(θ) =
sin (k+1)θ

2

(

sin (k+1)θ
2 cos θ

2 + cos (k+1)θ
2 sin θ

2

)

sin θ
2

Sk+1(θ) =
sin (k+1)θ

2 sin (k+2)θ
2

sin θ
2

8. (Quicksort) To show that the quicksort algorithm works, use induction (surprise!) First, we’ll show that it works
for sets of size zero or of size 1. Those sets are already sorted, so there is nothing to do, and since they fall under
the first case of the algorithm which says to do nothing, we arein business.

If the quicksort algorithm works for all sets of numbers of sizek or smaller, then if we start with a list of size
k+1, since we pick out one element for comparisons and divide therest of the set into two subsets, it is obvious
that each of the subsets has size smaller than or equal tok. Since the algorithm works on all of those, we know
that the full algorithm works since the numbers smaller thanthe test number are sorted, then comes the test
number, then comes a sorted list of all the numbers larger than it.

This algorithm is heavily used in the real world. Surprisingly, the algorithm’s performance is worst if the original
set is already in order. Can you see why?

9. (Towers of Hanoi) Again, this is an easy induction proof. If there is only one disk on a post, you can immediately
move it to another post and you are done.

If you know that it is possible to movek disks to another post, then if you initially havek + 1 disks, move the
topk of them to a different post, and you know that this is possible. Then you can move the largest disk on the
bottom to the other empty post, followed by a movement of thek disks to that other post.

This method, which can be shown to be the fastest possible, requires2k − 1 steps to movek disks. This can
also be shown by induction—ifk = 1, it requires21 − 1 = 1 move. If it’s true for stacks of size up tok disks,
then to movek + 1 requires2k − 1 (to move the topk to a different post) then 1 (to move the bottom disk),
and finally2k − 1 (to move thek disks back on top of the moved bottom). The total fork + 1 disks is thus
(2k − 1) + 1 + (2k − 1) = 2 · 2k − 1 = 2k+1 − 1.

The above proof doesn’t actually spell out an algorithm to solve the towers of Hanoi problem, but here is such
an algorithm. You may be interested in trying to show that thefollowing method always works:

Suppose the posts are numbered 1, 2, and 3, and the disks beginon post 1. Take the smallest disk and move
it every other time. In other words, moves 1, 3, 5, 7, et cetera, are all of the top disk. Move the top disk in a
cycle—first to post 2, then 3, then 1, then 2, then 3, then 1, . . .On even moves, make the only possible move that
does not involve the smallest disk. This will solve the problem.

10. (Pick’s Theorem) The proof of this depends on the fact that an n-sided polygon, even one that is concave,
can be divided into two smaller polygons by connecting two vertices together so that the connecting diagonal
lies completely inside the polygon. This can obviously be continued until the original polygon is divided into
triangles.

A 4-sided polygon (a quadrilateral) is thus split into two triangles; a 5-sided polygon into 3 triangles, et cetera,
and in general, ann-sided polygon is split inton − 2 triangles.
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We are going to prove Pick’s theorem by induction on the number of sides of the polygon. We will start with
n = 3, since the theorem makes sense only for polygons with three or more sides.

If we can show that it works for triangles then we’ve proven the theorem for the casen = 3. We then assume
that it holds for all polygons withk or fewer edges, and from that, show that it works for polygonswith k + 1
edges.

We’ll delay the proof fork = 3 for a moment, and look at how to do the induction step. When your k + 1-sided
polygon is split, it will be split into two smaller polygons that have an edge in common, and that both havek or
fewer edges, so by the induction hypothesis, Pick’s Theoremcan be applied to both of them to calculate their
areas based on the number of internal and boundary points. The area of the original polygon is the sum of the
areas of the smaller ones.

Suppose the two sub-polygons of the original polygonP areP1 andP2, whereP1 hasI1 interior points andB1

boundary points.P2 hasI2 interior andB2 boundary points. Let’s also assume that the common diagonalof the
original polygon betweenP1 andP2 containsm points. For concreteness, let’s assume thatP hasI interior and
B boundary points.

A(P ) = A(P1) + A(P2) = (I1 + B1/2 − 1) + (I2 + B2/2 − 1).

Since any point interior toP1 or P2 is interior toP , and sincem− 2 of the common boundary points ofP1 and
P2 are also interior toP , I = I1 + I2 + m − 2. Similar reasoning givesB = B1 + B2 − 2(m − 2) − 2.

Therefore:

I + B/2 − 1 = (I1 + I2 + m − 2) + (B1 + B2 − 2(m − 2) − 2)/2 − 1

= (I1 + B1/2 − 1) + (I2 + B2/2 − 1) = A(P ).

The easiest way I know to show that Pick’s Theorem works for triangles is to show first that it works for
rectangles that are aligned with the lattice, then to show that it works for right triangles aligned with the lattice,
and using that, we show that it works for arbitrary triangles.

For rectangles, it’s easy. Suppose the rectangleR is of sizen by m. There will be2m + 2n boundary points
and (m − 1)(n − 1) interior points (convince yourself this is true with a drawing). Thus,B = 2m + 2n,
I = (m − 1)(n − 1), and the area ismn. So:

mn = A(R) = I + B/2 − 1 = (m − 1)(n − 1) + m + n − 1 = mn.

Any right triangleT can be extended to a rectangle by placing a copy of it on the other side of its diagonal. If
the triangle has sidesm, n, and

√
m2 + n2, its area ismn/2. If there arek points on the diagonal, the number

of interior points of the triangle is((m − 1)(n − 1)− k)/2. The number of boundary points ism + n + 1 + k.
Check Pick’s formula:

mn/2 = A(T ) = I + B/2 − 1

= ((m − 1)(n − 1) − k)/2 + (m + n + 1 − k)/2 − 1 = mn/2.

Any triangle that is not a right triangle can be surrounded bya rectangle and its area can be written as the area
of the rectangle minus the areas of at most three right triangles. The proof for this final case is left as an easy
exercise. The manipulations are very similar to those shownin the proofs above.

11. (Arithmetic, Geometric, and Harmonic means)

Hint: Once you prove thatG(A) ≤ A(A), then you can show find a relationship between the harmonic and
arithmetic means that proves the inequality between those two means.
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Hint: Prove thatG(A) ≤ A(A) if the setA has2n elements. Later, show it is true for an arbitrary number of
elements.

Solution:

We will first show that
G(A) ≤ A(A) (13)

if A contains2n values. This can be done by induction. Ifn = 0, then Equation 13 amounts to:

a1 ≤ a1

which is trivially true.

To see how the induction step works, just look at going fromn = 0 to n = 1. We want to show that:

√
a1a2 ≤ a1 + a2

2
.

Square both sides, so our problem is equivalent to showing that:

a1a2 ≤ a2
1 + 2a1a2 + a2

2

4

or that

0 ≤ a2
1 − 2a1a2 + a2

2

4
=

(a1 − a2)
2

4
.

This last result is clearly true, since the square of any number is positive.

So in general, suppose it’s true for sets of sizek = 2n and we need to show it’s true for sets of size2k = 2n+1,
or in other words show that:

2k
√

a1a2 · · · a2k ≤ a1 + a2 + · · · + a2k

2k
. (14)

Rewrite Equation 14 as:

√

k
√

a1 · · · ak
k
√

ak+1 · · · a2k ≤
a1 + · · · + ak

k +
ak+1 + · · · + a2k

k
2

.

If we let

a = k
√

a1a2 · · · ak

b = k
√

ak+1ak+2 · · · a2k

A =
a1 + · · · + ak

k

B =
ak+1 + · · · + a2k

k

and we know thata < A andb < B (because the induction hypothesis tells us so fork = 2n) then we need to
show that √

ab ≤ A + B

2
.

But we showed above that
√

AB ≤ (A + B)/2, and we know that
√

ab ≤
√

AB so we are done.

But of course, not all sets have a cardinality that is exactlya power of 2. Suppose we want to show that it’s true
for a set of cardinalitym, wherem < k = 2n.

Our setA = {a1, a2, . . . , am} containsm elements. Let

u =
a1 + a2 + · · · + am

m
.
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If we addm − k copies ofu to the original members of the setA, we will have a new setA′ with k = 2n

members:A′ = {a1, a2, . . . , am, u, u, ..., u}. Since we know thatG(A′) ≤ A(A′), we have:

k

√

a1 · · · amuk−m ≤ a1 + a2 + · · · + am + (k − m)u

k
. (15)

If we raise both sides of Equation 15 to the powerk and do some algebra, we get:

a1a2 · · · amuk−m ≤
(a1 + a2 + · · · + am + (k − m)u

k

)
k

a1a2 · · ·am ≤
(

(m

k

)(a1 + · · · + am

m

)

+
(k − m

k

)(a1 + · · · + am

m

)

)k
um−k.

a1a2 · · ·am ≤ ukum−k = um =
(a1 + a2 + · · · + am

m

)m
,

which is exactly what we were trying to prove.

Now to complete the problem, we need only show thatH(A) ≤ G(A). To show this, consider the setA′ =
{1/a1, 1/a2, . . . 1/am}.

We know that the geometric mean is less than the arithmetic mean, so apply that fact to the setA′:

1

a1a2 · · · am
≤

(

1
a1

+ 1
a2

+ · · · + 1
am

)

m
.

If we invert both sides (which will flip the direction of the inequality), we have the desired result.

12. (Catalan numbers) We will begin by showing that

Ti+1 = TiT0 + Ti−1T1 + · · · + T0Ti. (16)

To see this, begin with the leftmost matched pair of parentheses. It can contain between zero andi matched
pairs inside it. If it containsk matched pairs, the remaining parentheses on the right contain i − k pairs. Thek
matched pairs can be arranged inTk ways, and the remainder inTi−k ways, fork = 0, . . . , i. So expression 16
holds.

Let

f(x) =

∞
∑

k=0

Tkxk = T0 + T1x + T2x
2 + · · ·

[f(x)]2 = T0T0 + (T1T0 + T0T1)x + (T2T0 + T1T1 + T0T2)x
2 + · · ·

= T1 + T2x + T3x
2 + · · ·

T0 + x[f(x)]2 = T0 + T1x + T2x
2 + · · · = f(x),

and, sinceT0 = 1:
x[f(x)]2 − f(x) + 1 = 0.

Now use the quadratic formula to solve forf(x):

f(x) =
1 ± (1 − 4x)1/2

2x
. (17)
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The binomial theorem states that:

(1 + u)n = 1 +

(

n

1

)

u +

(

n

2

)

u2 +

(

n

3

)

u3 + · · · ,

so if n = 1/2 in equation 17, we have:

(1 − 4x)1/2 = 1 −
(1

2

1

)

(4x) +

(1
2

2

)

(4x)2 −
(1

2

3

)

(4x)3 + · · ·

In order for equation 17 to make sense, we need the negative value of the±, and we obtain:

f(x) =

(1
2

1

)

4x

2x
−

(1
2

2

)

(4x)2

2x
+

(1
2

3

)

(4x)3

2x
− · · · =

∞
∑

k=1

(1
2

k

)

(−4x)k

2x
.

Shifting the indexk, we obtain:

f(x) =

∞
∑

k=0

( 1
2

k + 1

)

(−4)k+1xk

2
. (18)

Tk will be the coefficient ofxk in equation 18:

Tk =

( 1
2

k + 1

)

(−4)k+1xk

2
=

1
2 · 1

2 · 3
2 · · · 2k−1

2 4k+1kk

2(k + 1)!

Tk =
(2k − 1)!!4k+1

(k + 1)! · 2 · 2k+1
,

whereu!! = u(u − 2)(u − 4) · · · 1. (2k − 1)!! can be multiplied by2kk! to yield (2k)! so we have:

Tk =
(2k)!4k+1

2k · 2 · 2k+1k!(k + 1)!

=
1

k + 1

(2k)!

k!k!
=

1

k + 1

(

2k

k

)

.

Catalan numbers come up in a huge number of examples. For example, given a regular polygon withn sides,
the Catalan numbers count the number of ways that the polygoncan be uniquely triangulated. To be precise, if
a polygon hasn + 2 sides, the number of ways to triangulate it is given by:

1

n + 1

(

2n

n

)

.
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