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1 Knocking Down Dominoes

The natural numbersy, is the set of all non-negative integers:
N ={0,1,2,3,...}.

Quite often we wish to prove some mathematical statementtah@ry member af\". As a very simple example,
consider the following problem:
Show that

o+1+2+3+---+n=@. L)
for everyn > 0.

In a sense, the above statement represents a infinity ofetitfstatements; for everyyou care to plug in, you get a
different “theorem”. Here are the first few:

0 = 0(1)/2=0

0+1 = 1(2)/2 =1
0+1+42 = 2(3)/2 = 3
0+1+2+3 = 3(4)/2 =6

and so on. Any one of the particular formulas above is easyaess—just add up the numbers on the left and calculate
the product on the right and verify that they are the same.hBut do you show that the statement is true déegry
n > 0? A very powerful method is known as mathematical inductadten called simply “induction”.

A nice way to think about induction is as follows. Imaginetteach of the statements corresponding to a different
value ofn is a domino standing on end. Imagine also that when a domstatement is proven, that domino is
knocked down.

We can prove the statement for everif we can show that every domino can be knocked over. If we kitleem over
one at a time, we’'ll never finish, but imagine that we can sameset up the dominoes in a line and close enough
together that when domino numbiefalls over, it knocks over domino numbégr+ 1 for every value ofc. In other
words, if domino numbe® falls, it knocks over dominad. Similarly, 1 knocks over, 2 knocks oves, and so on. If
we knock down numbdi, it's clear that all the dominoes will eventually fall.

So a complete proof of the statement for every value o&n be made in two steps: first, show that if the statement is
true for any given value, it will be true for the next, and settoshow that it is true for = 0, the first value.

What follows is a complete proof of statement 1:
Suppose that the statement happens to be true for a partiall@ ofn, sayn = k. Then we have:

k(k 41
0+1+2+---+k:%. 2)

We would like to start from this, and somehow convince owesekhat the statement is also true for the next value:
n =k + 1. Well, what does statement 1 look like when= k + 1? Just plug irk + 1 and see:
k+1)(k+2)

04 1+24 -kt (b +1) = g ®)



Notice that the left hand side of equation 3 is the same asthbdnd side of equation 2 except that there is an extra
k + 1 added to it. Saf equation 2 is true, then we can abdd- 1 to both sides of it and get:
k(k+1 E(k+1)+2(k+1 E+1)(k+2
0+1+2+---+k+(k+1):(T*)Jr(k+1)= (k + );r (k+1) _ (k+ ])3(2 +2) )
showing that if we apply a little bit of algebra to the rightiubside of equation 4 it is clearly equalte+ 1)(k+2)/2
— exactly what it should be to make equation 3 true. We hawertifely shown here that if dominefalls, so does
dominok + 1.

To complete the proof, we simply have to knock down the firghohm, domino number 0. To do so, simply plug
n = 0 into the original equation and verify that if you add all tiéeigers from 0 to O, you gét{0 + 1)/2.

Sometimes you need to prove theorems about all the integggertthan some number. For example, suppose you
would like to show that some statement is true for all polyg(see problem 10 below, for example). In this case, the
simplest polygon is a triangle, so if you want to use induttio the number of sides, the smallest example that you'll
be able to look at is a polygon with three sides. In this casa,will prove the theorem for the cage= 3 and also
show that the case for = k implies the case fon = k + 1. What you're effectively doing is starting by knocking
down domino number 3 instead of domino number 0.

2 Official Definition of Induction

Here is a more formal definition of induction, but if you lodksely at it, you'll see that it’s just a restatement of the
dominoes definition:

Let S(n) be any statement about a natural numbeif S(0) is true and if you can show that &(k) is true then
S(k + 1) is also true, the$(n) is true for everyn € N.

A stronger statement (sometimes called “strong inducjitimdt is sometimes easier to work with is this:

Let S(n) be any statement about a natural numbefo show using strong induction th&{n) is true for alln > 0
we must do this: If we assume th&itm) is true for all0 < m < k then we can show th&t(k) is also true.

The only difference between these two formulations is thatformer requires that you get from the statement about
k to the statement abokit+ 1; the latter lets you get from any previous step (or combamadif steps) to the next one.
Notice also that the second formulation seems to leave eupdint aboutS(0), but it really doesn't. It requires that
you be able to prové&(0) using no other information, since there are no natural nugtbsuch that: < 0.

Using the second formulation, let’s show that any integeatgr than 1 can be factored into a product of primes. (This
does not show that the prime factorization is unique; it ahigws that some such factorization is possible.)

To prove it, we need to show that if all numbers less thdrave a prime factorization, so dokeslf k = 0ork =1
we are done, since the statement of the theorem specifitatgsghat only numbers larger than 1 are consideréd. If
is prime, it is already a product of prime factors, so we'raelcand ift = pg, wherep andq are non-trivial factors,
we know thalp < k andq < k. By the induction hypothesis, bothandg have prime factorizations, so the product of
all the primes that multiply to give andq will give &, sok also has a prime factorization.

3 Recursion

In computer science, particularly, the idea of inductionally comes up in a form known as recursion. Recursion
(sometimes known as “divide and conquer”) is a method thedlks a large (hard) problem into parts that are smaller,
and usually simpler to solve. If you can show that any probéam be subdivided into smaller ones, and that the
smallest problems can be solved, you have a method to solvebtem of any size. Obviously, you can prove this
using induction.

Here’s a simple example. Suppose you are given the cooedirtdtthe vertices of a simple polygon (a polygon
whose vertices are distinct and whose sides don't cross @en), and you would like to subdivide the polygon



into triangles. If you can write a program that breaks angdgsolygon (any polygon with 4 or more sides) into two
smaller polygons, then you know you can triangulate therenhing. Divide your original (big) polygon into two
smaller ones, and then repeatedly apply the process to thléesmmnes you get.

The concept of recursion is not unique to computer scienberetare plenty of purely mathematical examples. Here’s
one of the most interesting that you may wish to play with:

Ackermann’s function is defined as follows on all pairs ofurat numbers:

A0,n) = n+1
A(m,0) = A(m-—1,1), ifm>0
A(m,n) = A(m—1,A(m,n—1)), if m,n>0

Just for fun, try to calculatel(4, 2). (Hint: First figure out whatd(0, ) looks like for alln. Then figure out what
A(1,n) looks like, for alln, et cetera.)

4 Make Up Your Own Induction Problems

In most introductory algebra books there are a whole bunghraflems that look like problem 1 in the next section.
They add up a bunch of similar polynomial terms on one sidé,feave a more complicated polynomial on the other.
In problem 1, each term #?. Just add themup for =0, 1,...,n.

Here’s how to work out the term on the right. Let's do:
Sn)=0-1-24+1-2-3+2-3-44+---+n-(n+1) - (n+2).
Work out the value oF(n) by hand for a few values of = 0, 1, 2, .. .. The first fewS(n) values are:
0,6, 30,90, 210, 420, 756, 1260.

Now list those in a row and take successive differences:

0 6 30 90 210 420 756 1260
6 24 60 120 210 336 504
18 36 60 90 126 168
18 24 30 36 42
6 6 6 6
0 0 0

Notice that other than the top line, every number on the tabike difference between the two numbers above it to
the left and right. If all the terms in your sum are generatgd polynomial, you'll eventually get a row of all zeroes
as in the example above. Obviously if we continued, we'd hravweafter row of zeros.

Now look at the non-zero numbers down the left edgé; 18, 18, 6,0, 0, . . ., and using those numbers, calculate:

sw=0fg) wo() e (e) +n () +oi) o) oo @

Remember thafy) =1, () =n, (5) = n(n—1)/2!, (3) =n(n—1)(n—2)/3!, (}) = n(n—1)(n—2)(n—3)/4,
and so on.

Equation 5 becomes:

18n(n—1)  18n(n—1)(n —2) n 6n(n — 1)(n—2)(n—3).

S(n) =0+6n+ 5 + G 21




A little algebra converts the equation above to the simpglifam below. Check that it works for the first few values
of n, and if you wish, construct a standard proof by induction ihaorks:
S(n) = nn+1)(n+2)(n + 3).
4
If you're really ambitious, you can even show that the teghriabove (summing the coefficients in the left diagonal
by various factors 0(2)) works, using induction.

Finally, using the example above as a model, notice theviiig pattern. What is the pattern, and can you prove it by
induction?

o+1+2+...+n:"(”7+1)
0-1+1-2+~--+n(n+1):w
0-1-24+1-2:34- - +nn+1)(n+2) = "("+1)("4+2)(”+3)
0-1-2:3+1-2-3-d4--+n(n+1)(n+2)(n+3) = "("+1)(”+25)(”+3)("+4)
n(n +1)(n+2)(n + 3)(n +4)(n + 5)

0-1-2:3-441-2-3-4-54+---+n(n+1)(n+2)(n+3)(n+4) = :

5 Exercises

These problems are all related, and are all pretty mechan¥a may wish to do a few of them just to exercise
your algebra and a mechanical application of induction. &@miolve a lot of grinding—they’re mechanical, not
necessarily easy!

Each series below hasterms:

O 41 +2' 43 4 4 (n— 1)t = ";—g
412422 B4 (no1)? = LT
34 n23 ,SQ
P+ 42 +3 4 (n—1P = %5—74+Z3
n n n n
0*+1*4+2' 43+ (n—1)* = ?6—75+?4—%2
5
PP+ 43+ p(n—1)° = %7—%6+1—}—Z—
0 +10 4204354 p (n—1)° = "78—%7+%6—%j4—7;2
™ 7
0" +17+2"+37 4. 4 (n—1)7 = %9—%8 1%7 2%% 7;—23
m’ S 2
415 4+254+35 4. 4 (n—1)>° = %—% %—1—% %—%
6 Problems
1. Show that




. Let F}; be the Fibonacci numbers defined iy = 0, F}, = 1, and ifk > 1, Fy, = Fy_1 + Fy_o. Show that:

ananJrl = Fr% + (_1)71

and that .
> F?=FuFp1.
1=0
. Show that: ) . )
I+ —=+—F7=+-+—7=<2Vn
AT AT TS
. Show that:
204161 (2n)! > ((n+ 1)H™.
. Show that:

/ s

where there are 2s in the expression on the left.

. (Chebyshev Polynomials) Defiti&(z) as follows:

Po(I) =1
Pi(x) = =z
Poi1(x) = xP,(z) — Py—1(x),forn > 0.
Show that .
P, (2cosf) = M
sin 0
. Show that:

sin (—("21)9) sin (%9)

sin (g)
. (Quicksort) Prove the correctness of the following cotepalgorithm to sort a list of numbers into ascending
order. Assume that the original list is

sinf + sin260 4+ sin360 + - - - + sinnf =

{zo,21,.. ., 201}

Sort(j,k) wherej < k sorts the elements from); to z;_;. In other words, to sort the entire list efelements,
call SortQ, n). (Note that Sortf, j) sorts an empty list.)

Here is the algorithm:

e (Case l) Ifk — j < 1, do nothing.

e (Case 2) Itk — j > 1, rearrange the elements fram; throughz,_; so that the first slots in the list are
filled with numbers smaller than;, then put inz;, and then all the numbers larger than (This can be
done by running a pointer from ti{é — 1) slot down and from thé;j + 1)** slot up, swapping elements
that are out of order. Then puj into the slot between the two lists.)

After this rearrangement, suppose thatwinds up in slotn, wherej < m < k. Now apply Sort{,m)
and Sortfn + 1, k).



9.

10.

11.

12.

(Towers of Hanoi) Suppose you have three posts and a sfacklisks, initially placed on one post with the
largest disk on the bottom and each disk above it is smaker tie disk below. A legal move involves taking the
top disk from one post and moving it so that it becomes the tslpah another post, but every move must place
a disk either on an empty post, or on top of a disk larger tresifit Show that for every there is a sequence
of moves that will terminate with all the disks on a post difiet from the original one. How many moves are
required for an initial stack ot disks?

(Pick’s Theorem) Given a simple polygon in the plane vehaartices lie on lattice points, show that the area of
the polygon is given by + B/2 — 1, where[ is the number of lattice points entirely within the polygorda3
is the number of lattice points that lie on the boundary ofgtbgon.

A simple polygon is a closed loop of line segments whose oalgtp in common are the endpoints of adjacent
pairs of segments. In other words, the edges of the polygamtimuch each other, except at the vertices, where
exactly two edges meet. Note that a simple polygon need ncoineex.

e o o o o o o o

In the example above, the triangle includes 6 boundary pa@nt 12 interior points, so its area should be
(according to Pick's Theoremi@ + 6/2 — 1 = 14. You can check that this is right by noticing that its area is
the area of the surrounding rectangle 8 = 40) less the areas of the three surrounding triangles: (5/2,15
and 32/2). When we check, we gdtt — 5/2 — 15/2 — 32/2 = 14.

(Arithmetic, Geometric, and Harmonic means) let= {a1,as,...,a,} be a set of positive numbers. We
define the arithmetic, geometric, and harmonic mea#é4), G(A), andH(A), respectively) as follows:

ar+az +---+ap

A4) = '
G(A) = Yaaz---a,
H(A) = !

Show that
H(A) < G(A) < A(A).

In the solution section, the actual solution is preceded tyuple of hints.

(Catalan numbers) Givenpairs of parentheses, L&}, be the number of ways they can be arranged in a valid
mathematical expression. For exampley = 3, there are 5 ways to rearrange the parentheses:

((0)), (DO, 0D, (00), 000,

T - 1 (2n>
n+1\n

Tip1=TTo+TiaTh + - + ToTh.

soT3 = 5. LetTy = 1. Show that:

Hint: Show that:



7 Solutions

1. If n = 0 we trivially have:
0% = 0(1)(1)/6.

Assume that the equation is true for= k:

02+12+m+k2:k(k+1)6(2k+1)' -

From this, we want to show that:

k+1D)((k+1)+D2k+1)+1)
6
(k + 1)(k + 2)(2k + 3)
- .

0P+12+ -+ k4 (k+1)? =

Begin with Equation 6 and add + 1)? to both sides:

2 k(k+1)(2k+1)

P+ +- - +E+ (k+1) G

+ (k+1)2.
Just do some algebra, and the proof is complete:

k(k+1)(2k+ 1)+ 6(k + 1)?
6

0>+ +(k+1)°=

024t (k412 = (k+1)(2k2gk+6k+6) _ (k+1)(k+62)(2k+3).

2. Part1:

First check fom = 1:
FoF, =0-2=0=F}+(-1)!' =1-1=0.

If we assume it is true fon = k, we have:

Foe1Frp = FE+ (1", (7)

From this, we need to show that the equality continues to fwld = k£ + 1. In other words, we need to show
if we begin with Equation 7 we can show that:

FyFiya = Fiy + (-1
SinceFy o = Fy, + Fy41, the equation above is equivalent to:
Fi(Fr + Frq1) = F2q + (-1)FH,

orto
FZ + FyFq = Fpy + (=1)F

SubstituteF;? from the right-hand-side of Equation 7:

Fy1Frpr — (-1)F + FyFyr = F2 o + (1),



or
Fop1(Fem1 + Fi) = Fpyy + (DM + (-1)F = FZ,,

or
2 _ 2
Fri = Fiya

Part 2:
Forn = 0:

SR =F=0=FRFkK=01=0.
1=0
If it's true for n = k:

k
Y F?=FiFin

=0
we can add?, , to both sides of Equation 8 to get:
k+1
Z F? = FyFysr + F oy = Fip1 (Fi + Fyg1) = Fry1 Fiopo.
=0

. Forn = 1 we need to show that:
1<2v1=2.

Assume the equation is true for= k:

11 1
I+ —+—++—<2Vk
V2 V3 Vk

To show that it is also true fot = k£ + 1, add1/+v/k + 1 to both sides:

11 1 1 1
I+ —+— 4+ —+—— <22+ ——.
V2 V3 VE  VE+1 VE+1

If we can show that

1
2k + <ok +1
vkE+1

then we are done. Multiply both sides gk + 1 and then square both sides to obtain:

4k(k+1) +4Ek(k+ 1)+ 1 < 4(k* + 2k +1).

Rearrange:
4/ k(k+1) <4k + 3,

and square both sides again:
16k2 4+ 16k < 16k + 24k + 9,

which is obviously true.

(8)



4. First show itis true fon = 1:
2=21> (2! =2.
Now assume it is true for = k:
21- 416!+ (2k)! > ((k + 1)H*. 9)

If we multiply both sides of Equation 9 bi2(k + 1))!, we obtain:

204l (2k)1(2k + 2)! > ((k + 1))F(2k + 2)!

If we can show that the right hand side of the equation abolager than((k + 2)!)¥*!, we are done. Notice
that the term(2k + 2)! on the right hand side can be written:

(2k +2)! = (2k + 2)(2k + 1)(2k) - - - (k + 3) (k + 2)!

This consists of: terms, all greater thak + 2, multiplied by (k + 2)!, so

(k+DFRE+2)! > ((k+DYF(k+2)"(k +2)!
= ((k+2)D)"(k+2)! = ((k +2))*H.

5. Forn = 1 we have:

V2 = 2cos% =2cosm/4=2V2/2 =2

Now assume it’s true fok nested square roots:

i
\/2—1—\/24—\/2—1—---4—\/5:2005%.

If we add 2 to both sides and take the square root, the left batedwill now havek + 1 nested square roots,

and the right hand side will be:
,/2—1—2005%. (20)

We just need to show that the value above is equal to

2 cos 21@—712 (12)

cos@:\/HCTOS%. (12)

Substituter /2%+2 for ¢ in equation 12 and we can show the equality of the expresgidasid 11 above.

We know that for any anglé we have:

6. (Chebyshev Polynomials) First, let's show that the fdanhwlds forboth » = 0 andn = 1. (For this example,
we must do the proof for the first two cases, because to geétoabe: + 1, we need to use the result ferand
fork —1.)

Casen = 0:
sinf

1= Py(2cosf) = 1.

sin 6



Casen = 1:
sin 260 B 2sinf cos

2cosf = Pi(2cosf) = = 2cosé.

sinf sin 6
Now assume that it's true for = k andn = k — 1, wherek > 0:

sin(k + 1)0 sin k6

Py (2cosb) = g , Pr_1(2cosf) = nd
From the definition ofP;; (z) we then have:
Pry1(2cosf) = 2cosP;(2cosf) — Py_1(2cosb)
_ 260898111(/? +1)6 si.n ko
sin 0 sin 0

Use the trick thaké = (k + 1)0 — 6 to rewrite the right hand side of the equation above as:
2cosfsin(k + 1)0 —sin((k + 1)6 — 6)

sin 0
2 cos@sin(k + 1)0 — cosfsin(k + 1)0 + cos(k + 1)0siné
sin 6
cosOsin(k + 1)0 + cos(k + 1)0sin 0
sin 0

Py1(2cosb) =

sin(k + 2)6

sin 0
. To simplify the notation, let’s let:

Sk(0) =sinf 4 sin20 + - - - 4 sin k6.

To prove the statement far = 1 we need to check that:

o _ sin(20/2)sin(0/2) .
sinf = 51(0) = Sn(072) = sin 6.
Assume it is true fon = k: (k106
. i kO
Sk (9) _ Sin —2 05111 )
sin 2

2

SinceSi41(0) = Sk(6) + sin(k + 1)6, we have:

vy (BHD)O . kO : .0
sin ~—~>sin %> + sin(k + 1)fsin &
Shra(0) = TS Lok Dn

a0
Sln2

Now, using the fact thatin(k 4+ 1)0 = sin 2((k + 1)6/2) and that for any angle, sin 2y = 2 sin~y cos ¥:

Sinwsinﬁ+2sinwcoswsing
S 6‘): 2 2 2 2 2
k+1( .0
sin 3
. (k+1)0 [ . k+1)0 .
sm%(smk—;—i—%zos( J;) sm%)
Sk+1(0) = 7

sin 5

10



8.

10.

Now use the trick thatin(k6/2) = sin((k + 1)0/2 — 6/2) and expand it as the sine of a sum of angles:

. (k+1)0 [ . (k+1)8 k+1)0 . k+1)0 .
sin { +2) (sm( J;) cos%—cos%sm%—i—?cos(%)sm%)
Sk+1(0)= —>
sin 5
. (k+1)0 [ .. (k+1)8 k+1)0 .
s1n(+2) (sm(z) cosg—l—cos(JrT)sm%)
Sk+1(0) = —>
sin 5
Sinwsmw
Sk+1(9): 9

Sin 3
(Quicksort) To show that the quicksort algorithm worksg induction (surprise!) First, we’ll show that it works
for sets of size zero or of size 1. Those sets are alreadydsadehere is nothing to do, and since they fall under
the first case of the algorithm which says to do nothing, werabeisiness.

If the quicksort algorithm works for all sets of numbers afest or smaller, then if we start with a list of size
k+ 1, since we pick out one element for comparisons and dividedgsteof the set into two subsets, it is obvious
that each of the subsets has size smaller than or eqéalSimce the algorithm works on all of those, we know
that the full algorithm works since the numbers smaller tttentest number are sorted, then comes the test
number, then comes a sorted list of all the numbers largeritha

This algorithm is heavily used in the real world. Surpriginthe algorithm’s performance is worst if the original
set is already in order. Can you see why?

. (Towers of Hanoi) Again, this is an easy induction probthére is only one disk on a post, you can immediately

move it to another post and you are done.

If you know that it is possible to movie disks to another post, then if you initially haket 1 disks, move the
top £ of them to a different post, and you know that this is possilbleen you can move the largest disk on the
bottom to the other empty post, followed by a movement ofitldésks to that other post.

This method, which can be shown to be the fastest possildajres2® — 1 steps to mové: disks. This can
also be shown by induction—¥# = 1, it requires2! — 1 = 1 move. If it's true for stacks of size up todisks,
then to movek + 1 requires2® — 1 (to move the topk to a different post) then 1 (to move the bottom disk),
and finally2* — 1 (to move thek disks back on top of the moved bottom). The total fo¢ 1 disks is thus
2F -1 +14+2F-1)=2.2F -1 =21 1,

The above proof doesn’t actually spell out an algorithm teesthe towers of Hanoi problem, but here is such
an algorithm. You may be interested in trying to show thatfthlewing method always works:

Suppose the posts are numbered 1, 2, and 3, and the disksdmegost 1. Take the smallest disk and move
it every other time. In other words, moves 1, 3, 5, 7, et cemm all of the top disk. Move the top disk in a
cycle—first to post 2, then 3, then 1, then 2, then 3, then Qn.even moves, make the only possible move that
does not involve the smallest disk. This will solve the pesbl

(Pick’s Theorem) The proof of this depends on the fact #iman-sided polygon, even one that is concave,
can be divided into two smaller polygons by connecting twdiwes together so that the connecting diagonal
lies completely inside the polygon. This can obviously betowed until the original polygon is divided into
triangles.

A 4-sided polygon (a quadrilateral) is thus split into twiangles; a 5-sided polygon into 3 triangles, et cetera,
and in general, an-sided polygon is splitinta — 2 triangles.

11



11.

We are going to prove Pick’s theorem by induction on the nunalbsides of the polygon. We will start with
n = 3, since the theorem makes sense only for polygons with thremee sides.

If we can show that it works for triangles then we've provee theorem for the case = 3. We then assume
that it holds for all polygons wittk or fewer edges, and from that, show that it works for polygwitk & + 1
edges.

We'll delay the proof fork = 3 for a moment, and look at how to do the induction step. When ¥ou 1-sided
polygon is split, it will be split into two smaller polygonisat have an edge in common, and that both Hawe
fewer edges, so by the induction hypothesis, Pick’s Thear@mbe applied to both of them to calculate their
areas based on the number of internal and boundary poinesarEa of the original polygon is the sum of the
areas of the smaller ones.

Suppose the two sub-polygons of the original polygbare P; and P,, whereP; hasI; interior points and3;
boundary pointsP, hasI, interior andB; boundary points. Let's also assume that the common diagdiaé
original polygon betwee?; and P, containsn points. For concreteness, let's assume thagas! interior and
B boundary points.

A(P) = A(P)) + A(P2) = (I + B1/2 = 1) + (I + By /2 — 1).

Since any point interior t&; or P, is interior to P, and sincen — 2 of the common boundary points & and
P, are also interior t&?, I = I + I + m — 2. Similar reasoning giveB = By + By — 2(m — 2) — 2.

Therefore:

I+B/2—1 = (Il+Ig+m—2)+(Bl+Bg—2(m—2)—2)/2—1
= (h+B1/2=1)+ (I2+ B2/2—1) = A(P).

The easiest way | know to show that Pick’s Theorem works fiangles is to show first that it works for
rectangles that are aligned with the lattice, then to shawittworks for right triangles aligned with the lattice,
and using that, we show that it works for arbitrary triangles

For rectangles, it's easy. Suppose the rectamyie of sizen by m. There will be2m + 2n boundary points
and(m — 1)(n — 1) interior points (convince yourself this is true with a dragj. Thus,B = 2m + 2n,
I =(m—1)(n—1), andthe area isin. So:

mn=AR)=1I+B/2—-1=(m—-1)n—1)+m+n—1=mn.

Any right triangleT" can be extended to a rectangle by placing a copy of it on ther sftle of its diagonal. If
the triangle has sides, n, andv/'m? 4+ n?2, its area isnn/2. If there arek points on the diagonal, the number
of interior points of the triangle i§(m — 1)(n — 1) — k)/2. The number of boundary pointsis +n + 1 + k.
Check Pick’s formula:

mn/2 = A(T)=I+B/2-1
= (m—1n-1)—-k)/24+(m+n+1—-k)/2—1=mn/2.
Any triangle that is not a right triangle can be surrounde@bgctangle and its area can be written as the area

of the rectangle minus the areas of at most three right tiésndrhe proof for this final case is left as an easy
exercise. The manipulations are very similar to those shiowime proofs above.

(Arithmetic, Geometric, and Harmonic means)

Hint: Once you prove thaf(A4) < A(A), then you can show find a relationship between the harmoric an
arithmetic means that proves the inequality between thwserteans.
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Hint: Prove thaG(A4) < A(A) if the setA has2™ elements. Later, show it is true for an arbitrary number of
elements.

Solution:

We will first show that
G(A) < A(A) (13)

if A contains2™ values. This can be done by inductionnli= 0, then Equation 13 amounts to:
a1 < aq

which is trivially true.
To see how the induction step works, just look at going from 0 to n = 1. We want to show that:

a1—|—a2

v a1ag S 5 .

Square both sides, so our problem is equivalent to showitg th

a% + 2a1a9 + a%

4

ajas <

or that
0< a? — 2a1ag + a3 _ (a1 — az)?
- 4 4

This last result is clearly true, since the square of any renigypositive.

So in general, suppose it's true for sets of gize 2" and we need to show it’s true for sets of stde= 27+1,

or in other words show that: g+ n
a/ a e a/
2\’“/0,1@2 A2k S ! 2 2k 2k . (14)

Rewrite Equation 14 as:

a1+--~+ak+ak+1+-k--+a2k

\/\’“/al"'ak\’“/ak+1"'a2k§ ks 5
If we let
o = {Yarasar
b = api10r12- - a
a1++ak
A= ——
k
B _ ak+1+}€--+a2k

and we know that. < A andb < B (because the induction hypothesis tells us sd:fer 2™) then we need to
show that

WEgA;B.

But we showed above thafAB < (A + B)/2, and we know that/ab < v/AB so we are done.

But of course, not all sets have a cardinality that is exaciypwer of 2. Suppose we want to show that it's true
for a set of cardinalityn, wherem < k = 2.

Our setA = {a1,as,. .., a,} containan elements. Let

o tax+ -+ an

m

13



If we addm — k copies ofu to the original members of the sdt, we will have a new sefl’ with £k = 2"

membersA’ = {a1,a2,. .., am, U, u, ...,u}. Since we know tha§(A’) < A(A"), we have:
. P at+as+ -+ am+ (k—mu
vai---apukF—m < A . (15)

If we raise both sides of Equation 15 to the powemd do some algebra, we get:

k

ajas - - amuFT™ < (a1+a2—|—~-~—|—am—|—(/€—m)u)

k

my, a1+ +am E—m.,a1+- -+ am km_
a1as - ay < ((?)( ! - )+ ( - ) 1 - )) i
ala?"'amgukumik:um:(a1+a2;"'+am)m’

which is exactly what we were trying to prove.
Now to complete the problem, we need only show tHatd) < G(A). To show this, consider the sdt =

{1/a1,1/aqs,...1/am}.

We know that the geometric mean is less than the arithmetanye® apply that fact to the sét:

1 1 1
1 (a—1+a—2+"'+m)
< .

a1ag - - - Ay m
If we invert both sides (which will flip the direction of theaquality), we have the desired result.

12. (Catalan numbers) We will begin by showing that
Tiv1 =TiTo +T; 111 + - + T T5. (16)

To see this, begin with the leftmost matched pair of paresghe It can contain between zero anshatched
pairs inside it. If it containg matched pairs, the remaining parentheses on the rightioontak pairs. Thek

matched pairs can be arrangedipways, and the remainder i} _;, ways, fork = 0,...,i. So expression 16
holds.

Let -
flz) = ZTkiﬂk =Ty + Tiw+ Tox® + -+
k=0
[f(ZC)]Q = TQTO —|— (TlTO + ToTl)ZC —|— (TQTD + TlTl —|— T()TQ)I2 —|— cee

= T1—|—T2£C—|—T3£C2—|—"'

To + z[f(x)]? = To + Thx + Toa® + --- = f(x),
and, sincel, = 1:

2[f@)]2 - f(@)+1=0.

Now use the quadratic formula to solve fbfz):

(17)



The binomial theorem states that:

(1—|—u)"—1+<7;>u—|— (;L)u%r (g)u?’—l-

soifn =1/2in equation 17, we have:

(1—42)Y/2=1— (%) (4z) + @) (4z)% — @) (4z)% 4 - -

In order for equation 17 to make sense, we need the negative ofthe+, and we obtain:

s = (- (3) e+ ()5 - - °°1 ()t

k=

Shifting the indext, we obtain:

gkl
1) % (18)

—|— N[

=3 (;

k=0
Ty, will be the coefficient of:* in equation 18:

1 1 3 2k—1 1k+11.k
Tk—< 3 )(—4)“195’“ 3 3 5 o ATk

2 B 2(k +1)!

(2k — 1)N14k+1
(k+1)!-2- 2K+

whereu!! = u(u — 2)(u — 4) - - - 1. (2k — 1)!! can be multiplied by2* ! to yield (2k)! so we have:

Ty, =

(2Kk)14F+1
2k . 2. 2k+1EI(k + 1)!

L (2k)! 1 [2k
E+1 Kk k+1\Ek)
Catalan numbers come up in a huge number of examples. Fompéxagiven a regular polygon with sides,

the Catalan numbers count the number of ways that the polygoie uniquely triangulated. To be precise, if
a polygon has + 2 sides, the number of ways to triangulate it is given by:

1 2n
n+1\n)/

T, =
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