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1 My Motivation

All these ideas have been churning around in my head for years. I’ve finally written
down this draft containing some of them. Although it is very rough, and I’m sure I’ve
left out many obvious things, I would appreciate comments.

The curriculum I’m proposing is aimed at high-school and below, although obviously
some of the ideas make sense in a university setting.

Just to show that I’m not completely ignorant of the situation, here is my background:
I have a BS in mathematics from Caltech, and a PhD in mathematics from Stanford. I
have taught courses in mathematics and computer science at various universities rang-
ing from Stanford to junior colleges. I have done a great deal of volunteer tutoring of
mathematics, both for kids and adults who have a great deal of difficulty to kids who
are far smarter than I am and have competed on various United States Olympiad math
teams. I also did a post-doc at Stanford in electrical engineering and have worked in
industry as a software engineer for 20 years.

2 The Problem Today

I think the problem with mathematics education at the university level in this country
is that it’s generally taught by and aimed at mathematicians. This trickles down to the
primary and secondary schools since the committees that determine the curricula are
usually packed with university-level mathematicians.

We are doing a great disservice to most of the population who say, quite rightly, “Why
did I waste my time learning algebra and trigonometry? I’ve never solved a single
quadratic equation or used the law of sines since I got out of school.”

I was trained as a professional mathematician, and in my non-mathematician, non-
engineering life, I have never really needed to solve a quadratic equation either.

You would think that in careers that use mathematics heavily–for chemists, physicists,
engineers, and computer scientists–at least they are learning the right stuff, but I don’t
think that’s the case. When I took third-year physics as a junior I had to work with
Fourier series using actual sines and cosines. I had, of course, learned a great deal
about Fourier series in my math courses, but all at a highly theoretical level. We didn’t
use sines and cosines; we used “complete sets of orthonormal functions on a measur-
able space” or something. We learned about the weird convergence properties of the
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functions that were on the edge of not having a Fourier expansion. The bottom line was
that I had to teach myself to do it in the “usual case” with sines and cosines applied to
reasonably well-behaved functions.

Later in life, I’ve run into dozens of similar cases, where I had learned the abstract,
theoretical theorems, but had never tried to apply them to real problems. If you read
Concrete Mathematics by Knuth, Graham, and Patashnik, Knuth states in the preface
that the reason the book and the course based on it were written and taught is that there
were large areas of mathematics he had never seen taught and that he wished he had
known in order to do his work in computer science.

In many universities, in fact, engineering departments offer their own math courses
since their students are unable to solve engineering problems with the tools they learn
from the math department. In the case of the University of Rochester a few years
ago, the administration decided basically to eliminate the math department and replace
it with service courses for students in various other areas. It didn’t happen, but it
sure came close to happening. I believe the main impetus was complaints from the
engineering departments.

3 What We Should Be Teaching

The bottom line is that we need to teach students the mathematical techniques they
will need to use later in life to solve the sorts of problems they will encounter. This
obviously varies from person to person, so in the best of all possible worlds, we could
teach a different sort of math class to future mathematicians, to future engineers, future
computer scientists, carpenters, accountants, or housewives, giving each exactly what
they need.

Having a separate curriculum for every type of person is clearly an impossible goal, but
I think we can do far better at designing a curriculum that would work well for every-
one. In the first few years, it would cover what everyone, technical or non-technical,
needs to know. At that point, most folks could stop taking math, and courses more
aimed at technical people but not necessarily mathematicians could be taught. I have
found that if I have a good idea of how to solve practical problems in an area, it’s
not hard to abstract it to “pure mathematics”, so by the time a person has decided that
he/she is going to be a professional mathematician, courses in pure mathematics could
be taught.

The argument is made that it’s good for the students to learn to think logically, and
that doing abstract math is a good way to teach logical thinking. The ability to think
logically is critical, but there are plenty of places where you can apply logic to practical
problems that require a more concrete type of mathematics.

I fully agree that there are some wonderful, beautiful theorems and results in pure
mathematics, some practical and some less so. I have no objection to teaching optional
courses on this material for non mathematicians, sort of like I might take an art ap-
preciation course even though I can’t draw a recognizable stick figure of a human by
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myself.

So what should the courses contain (in my humble opinion, of course)?

3.1 Basic Math

Since the bottom line of an education is to allow the student to be able to function well
in society, the best approach is to list the sorts of problems with some mathematical
content that ordinary people face. With such a list in mind, it’s much easier to see what
mathematics is useful and what is not. I make no claim that the list below is in any way
complete, but I believe that it gives a general idea of the things I have in mind.

• Household Finances Calculating change, adding assets, making and keeping
a budget, calculating interest (saving or borrowing), calculating taxes and tips,
working out your salary from pay rates. Is a car lease better than a car loan? If
you borrow $200,000 to purchase a house at 6% interest, about how much will
your monthly payment be?

• Problem-Solving Skills This is a sort of a universal skill, but I’m not positive
how to teach it, and at what level it should be taught to the average non-technical
person. Surely the ideas of getting an estimate of the total cost of a project before
beginning, or of knowing how to gather data to do research on the cost/benefit of
purchasing a house, boat, car, et cetera, is important.

• A Bullshit Detector Politicians, salesmen, and con-men may all try to fool you
with faulty statistics, bad logic, emotional appeals, et cetera. How do you rec-
ognize these? Basically, this amounts to how to apply logic to everyday life.
Almost everyone knows what a logical argument sounds like–it contains words
like “if”, and “therefore” in it–but very few people can make one or recognize
one. Logical fallacies should be studied.

Certainly a good topic in this area is the ability to use the resources of the internet
while having some sense as to the quality of the information obtained. Blindly
accepting the information on web pages may yield higher quality results than
fishing in a toilet, but only just slightly.

• Basic Numeracy “Numeracy” in mathematics means the same thing as “liter-
acy” does in reading. How can you think about large numbers and small num-
bers? If a new fighter jet costs a billion dollars, how much is that really, and what
sorts and quantities of other things could be purchased for the same amount?

• Estimation Be able to estimate roughly what the sum, difference, product or
quotient of numbers should be. Estimating costs of loans, amounts of fertilizer
needed to cover the yard, amount of paint needed for the walls. Estimating what
you’ll have to pay for your full grocery cart, how much you’ll pay for gasoline,
heating oil, water, electricity per month. Estimating how long it will take to drive
from Denver to San Francisco.
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• Estimating Probability and Statistics Being able to understand the relative
risks of certain situations. Is it worth it to purchase health insurance, life insur-
ance, different kinds of car insurance? How dangerous is it to ride a motorcycle,
to bungee-jump, to smoke cigarettes? How dangerous is it, really, to take a one-
in-a-million chance of getting killed? How dangerous is it to do so every day?
Should I bet on the lottery?

• Visualization How to interpret maps, charts, graphs, tables, et cetera. How to
display your own numerical information in a way that is easy for others to un-
derstand.

• Miscellaneous Doubling recipes. Purchasing beer for a group of 100. Exponen-
tial growth: investments, loans, population growth, the national debt, et cetera.
How to read and interpret graphs and charts.

The basic course I envision would cover the mathematics and logic necessary to solve
(or approximately solve) all the problems above. I have no objection to using calcula-
tors heavily, but I would insist that each student be able to estimate, with reasonable
accuracy, the results of such calculations before doing them.

It may seem like a small set of topics, but I think they should be taught over and
over, with more difficult problems each time around. That way, kids who didn’t “get”
fractions the first time around would not be doomed to be lost forever–fractions would
come up again.

I do not see a need to have courses that teach kids to use computer programs such as
email, word processors, or internet browsers–these are easy to use, and besides, they
change every year.

3.2 Technical Mathematics

It’s a little tougher to make a good list of typical problems for this area, since various
careers require different sorts of mathematics. An engineer, surveyor, accountant and
computer scientist use very different mathematical tools. I believe that the current
curriculum could be improved, even for technical people.

Here is a different sort of list from the one in the previous section:

• Algorithms This is basically problem solving. What data do I need to collect?
What do I do with it when I have it? How efficient is the calculation? Students
should have a good idea of what computer programs are capable of doing, and
probably the only way to learn this is to write programs to implement algorithms
in some language. I don’t think the particular language is too important. In five
years it will have changed anyway–consider what’s been the “best” language for
schools so far: BASIC, PASCAL, C, C++, JAVA–tomorrow it will be something
else.
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• “Word Problems” This refers to the process of taking a problem expressed in
natural language and converting it to an algorithm. The problems should, if pos-
sible, be more practical. You’ll never get most people to care “how old Mary’s
mother will be when she is 5 times as old as Mary is now”.

I think problems can be more realistic in other ways as well–some should contain
extraneous information, some should not contain enough information (in which
case the correct answer is “there’s not enough information to solve this prob-
lem”). Some should simply ask what information is necessary. All should require
not only a numerical answer but a description of why that particular method of
calculation is used.

There should be a strong emphasis on checking the answers, either by plugging
them back into the problem to see if they make sense, or finding alternative ways
to solve them. In addition, the best problems would require the kids to make an
estimate of the solution before even beginning work to serve as a sort of sanity
check on the final result.

• Algebra, Trigonometry, Geometry Every technical person needs to know how
to manipulate equations–to work with unknowns as if they were numbers, to
perform the basic algebraic operations to separate variables, how to draw and
interpret graphs of equations, et cetera.

The same goes for trigonometry and geometry. Technical people need to know
how to work with angles and to calculate lengths from them, to measure areas
and volumes–not just of simple figures like rectangles, triangles, and circles, but
of oddball shapes that can be subdivided into more basic ones or can be somehow
approximated.

• Numerical Approximations Most equations from the real world do not have
exact solutions, but it’s important to have some idea how to get approximate
solutions and to know roughly the size of the error that’s involved. Rather than
spend an eternity on the shapes and problems that can be solved exactly, look at
many problems that can’t. (Algebra books are crammed with quadratic equations
and 3-4-5 triangles, but cubic, quartic, and quintic equations are ignored, as well
as 4-5-6 triangles.)

I don’t think it’s worthwhile to learn all the different techniques, but it’s impor-
tant to know how to look up those techniques for your particular problem.

• Calculus This is the sort of thing engineers, physicists, and chemists will need.
Computer scientists will probably not use it directly much, but if they help the
engineers solve their problems, they’d better have a good understanding of the
sorts of problems the engineers face. The current calculus syllabus is, as in the
other subjects, aimed primarily at the problems that can be solved exactly–at
those integrals that can be evaluated. In the real world, very few of them can,
just as very few differential equations have an analytic solution, but it’s important
to know the properties of the solution and how to approximate that solution as
accurately as desired. A heavy emphasis on proof is not required.
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• Concrete Mathematics Future computer scientits need even more work in the
algorithm area. They need to know how to estimate the efficiency of an al-
gorithm, to know whether the algorithm works in all cases, et cetera. The con-
cepts of data storage, error checking, and the problems with using finite-precision
numbers need to be emphasized. This information is quite valuable for the engi-
neers et. al., since they will no doubt be using computers to solve their numerical
problems.

I think this is close to what is taught today in high schools, although perhaps a few
more practical problems would be in order. Students should learn algebra, especially
the idea of translating “word problems” into equations. I think perhaps less effort needs
to be expended on learning the techniques for solving equations, but general principles
can be pounded in, like, for example, the idea that if there are 5 unknowns it’s likely
that you’ll need 5 equations.

In the university, there need to be more practical courses, perhaps aimed at specific
careers. Mechanical engineers clearly need to know how to do different mathematics
than the physicists or the accountants, or the computer scientists. On the other hand,
if I know I’m going to be a mechanical engineer, I can learn just that subset of math.
Although I need to know how to solve certain differential equations, I really don’t
want to go to a pure math theoretical discussion of differential equations in general. I
want to practice with particular ones. I also want to know how to use a computer to
get numerical answers since most real problems will not be solvable by the analytic
solutions that the mathematicians teach.

3.3 Pure Math

I don’t think a future pure mathematician will suffer at all if she takes the mathematics
for technical people outlined in the previous section. It is important to have a solid
understanding of the way mathematics is used in the real world if you’re going to do
research in pure math. The only thing that’s missing is perhaps a very solid idea of
what it means to do a mathematical proof.

The concept of proof is currently introduced in geometry courses, and I think in some
ways that’s the worst place to do it. It’s done that way, of course, because that’s how
we’ve always done it. There are three problems with this:

1. Geometry is a new subject, so they are learning new concepts at the same time
they’re trying to learn to do proofs.

2. Geometry is fundamentally a right-brained activity, where almost all of the math-
ematics they’ve seen before has been left-brained, symbol-manipulation type.

3. At present, it is introduced to everybody, so the average level of mathematical
ability in the class is quite low. Thus the proofs tend to be extremely simple, and
to repeat the same ideas endlessly.
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Anyone who is really going to become a mathematician will have an interest in puzzles,
in “how old Mary is when her mother is five times as old as she is now”, and in beautiful
mathematical patterns and games. They can play with these in math clubs, but they
usually won’t learn to do rigorous proofs without some help, so perhaps one course on
the idea of proof (introduced initially with topics that are familiar like the integers or
algebra) as the central concept would be very good.

4 Why we are where we are

People tend to keep doing the same thing. A high school teacher will teach the same
things he/she learned. “I learned to do long division, so by God you will too.” The
“back to basics” folks cause lots of problems in this area. Remember how the ancient
Greeks agonized over the invention of writing and how it would destroy the ability of
their students to memorize things.

Also, if the curriculum changes, teachers will have to learn the new material, and that
may be a lot of work. Thus the teachers themselves, especially the older ones, may be
very resistant to change.

Every school district in the country has a set of requirements in their math curricula,
and changing them is terribly difficult. Actually, adding things is not difficult, which is
why a typical high-school geometry text is 600 pages long and contains almost nothing
of interest, while a text from the Soviet Union is 100 pages long and crammed with
interesting, meaty problems.

Professional mathematicians write curricula, but in a sense, they are trained primarily
to teach other people to become professional mathematicians.

There are huge “turf wars” in universities and (somewhat less) in lower schools. The
mathematicians are afraid that if the engineering school teaches math, they’ll lose po-
sitions. On the other hand, they’re not willing to teach that “horrible, ugly, applied
math”.

Some universities are beginning to see the overwhelming need to teach cross-discipli-
nary courses. Stanford University, in particular is doing this in a big way, and although
it is tough to get started, the results are good. There is no reason this sort of cooperation
between departments couldn’t be done on a person to person level at any university.
A math professor could talk to an engineering professor, and try to coordinate their
courses somewhat, for example.

5 Amusing Anecdotes

I can’t resist putting in this section. I was able, mostly, to leave personal anecdotes out
of the stuff above, but all of these shed some light on various problems in mathematics
teaching.
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• I was once at a PTA meeting, trying to argue for a bit more emphasis on es-
timation in the curriculum and was attacked by a furious parent who said that
mathematics was not about estimation; it is used only to get exact results, espe-
cially concerning that most important topic: money. I asked him how much he
would expect to pay monthly if he borrowed $200,000 for a home loan. He said
that it’s impossible to answer without knowing the interest rate. I said I don’t
know the rate–the loan is at variable interest–but didn’t he think it was worth-
while having some idea of the approximate payments in spite of that? I also
asked him this: “If one stick of bubblegum costs a penny, how much would you
pay for 1,000,000 sticks? ‘A million pennies’, is clearly the wrong answer; even
the worst businessman in the world can get a better quantity discount than that.”
Neither argument, of course, had any effect.

• I was an undergraduate at Caltech, and we had a wonderful math curriculum.
Of course Caltech had the luxury of having almost all technical people in the
classes and all of them took 2 years of math, 2 years of physics, and a year of
chemistry. But the courses were synchronized in the sense that when we needed
a new mathematical tool in physics, very often that tool had “miraculously” been
taught just the week before in the math class. Or the math problem would involve
some concept we had just seen in physics. It was great.

• A friend who was educated in the Soviet Union was teaching a university class
in linear algebra. Some student asked, “Are there any practical applications of
this?” (“this” meaning some topic in linear algebra). My friend thought for
a second and said, “Sure, in physics . . . ”, but the kid interrupted and said, “I
don’t know any physics.” My friend tried to give examples in chemistry, in
engineering, in economics, and in business, but in every case, the kid said, “I
don’t know anything about (whatever it was).” Finally, my friend said, “You’re
right. There are no applications. If you don’t know anything about the world,
mathematics has no applications.”

• Here’s an anecdote about one of the cross-disciplinary seminars at Stanford that
I mentioned earlier. It did not involve pure mathematicians, but rather population
biologists and economists. Both groups’ eyes were opened. Many of the biol-
gists’ ideas to help prevent ecological destruction were pointed out to be impos-
sible by the economists for reasons that were instantly obvious to the economists,
but which had never occurred to the biologists. And the reverse: when one of
the biologists said that under certain conditions the entire food production of the
world could collapse, one of the economists replied that such a collapse would
not be a giant problem. After all, only 3% of the world’s economy has to do with
food production. . .
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