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The concept of infinity is fascinating to most people, and as we shall see, it is probably much more interesting
than you think.

One of the problems with infinity is that the term has different meanings in different parts of mathematics. It can
be used as a limiting value, as in expressions like the following:

ζ(3) =
∞∑

i=1

1
i3

lim
x→0

1
x

= ∞.

It can also be used as an artificial “point at infinity” to compactify the real numbers, or there can be an infinite
number of points at infinity to build models of projective geometry in various dimensions.

All of the examples above, require a bit of advanced knowledge (except, perhaps, for projective geometry).

Perhaps the way most people first think of infinity is either in terms of listing things: “1, 2, 3, and go on forever”,
or as a way of counting things: “there are an infinite number of integers”. In this paper we’ll examine these last
two interpretations.

1 Counting Finite Sets

Before we plunge into what it means to “count” an infinite number of objects, let’s take a quick review of what
it means to count a finite number of objects. What does it mean when you say, “This set contains 7 objects”?

The best starting point is to begin by asking what it means for two sets to be the same size. (Mathematicians often
say that the sets have the same “cardinality”, but what they mean is that the sets are the same size. “Cardinality”
is a slightly better word, since it refers only to the count. So a set consisting of three bacteria has the same
cardinality as a set consisting of three super-novae, although it’s pretty easy to make an argument that the latter
set is larger, at least in some sense.)

Here is the formal definition: Two sets,A andB, have the same cardinality if there exists a1− 1 functionf that
maps setA onto setB.

When we say that “f is 1 − 1” we mean that the functionf never maps two elements ofA to the same element
of B, and since we said it maps “onto”B, every element ofB is the image of some element ofA.

This is really just a fancy mathematical way of saying that there is some way to match up the elements inA with
those inB so that each object inA corresponds to exactly one object inB and vice versa. Every element has a
match in the other set, and nothing is left over.

Generally, there are many, many ways to do this; lots of different functions can be used to demonstrate that the
cardinalities of two sets are equal. Luckily, we just need to find 1.

For example, letA = {1, 2, 3} and letB = {a, b, c}. The following functionf does the trick (where we
are denotingf by a set of ordered pairs as described in the “Something from Nothing” paper available at
http://www.geometer.org/mathcircles/nothing.pdf). The “(1, a)” in the set means thatf maps 1 toa,
or in other words, thatf(1) = a.):

f = {(1, a), (2, b), (3, c)}.
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But there are in reality six different functions that work (in this case):

f1 = {(1, a), (2, b), (3, c)}
f2 = {(1, a), (3, b), (2, c)}
f3 = {(2, a), (1, b), (3, c)}
f4 = {(2, a), (3, b), (1, c)}
f5 = {(3, a), (1, b), (2, c)}
f6 = {(3, a), (2, b), (1, c)}

It should be clear that for two finite sets each withn different elements, there aren! different1− 1 functions that
will map one onto the other.

1.1 Cardinal Numbers

Of course it’s nice to be able to tell if two sets have the same cardinality, but it is nicer still to give that cardinality
a name, and so we do. The usual names are “zero”, “uno”, “due”, “tre”, “quattro”, “cinque”, “sei”, . . . (well, if
you’re Italian, that is; English speakers use “zero”, “one”, “two”, et cetera). Luckily, almost everybody agrees
on the following notation: 0, 1, 2, 3, 4, . . . , no matter what language they speak.

In the “Something from Nothing” paper, we defined the setN of natural numbers from scratch, and completely
in terms of set theory:N = {0, 1, 2, 3, 4, 5, . . .}. But perhaps the nicest thing about the definition was that
each of the natural numbers is a set, and not only that; it is a set with the “correct” number of elements (the set
corresponding to the numbern contains exactlyn elements):

0 = {}
1 = {0}
2 = {0, 1}
3 = {0, 1, 2}
4 = {0, 1, 2, 3}
n = {0, 1, 2, 3, . . . , (n− 1)}

You may also recall the very simple rule we defined to get to the next number:

n + 1 = n ∪ {n}.

This will be very important later. Notice also thatn ∈ (n + 1), and thatn ⊂ (n + 1).
Now that we have a collection of cardinal numbers, we can compare our sets with them (well, at least our finite
sets). Of course it has to be shown that each natural number has adifferentcardinality and so on, but that’s not
too difficult. When we find one that matches up with our set, we know how big our set is.

Let’s introduce a notation for cardinality. IfS is a set, the#S stands for “the cardinality ofS”, and it will be a
cardinal number. For example,#{a, b, c} = 3, #{1, 3, 5, 7, . . . , 99} = 50, and#7 = 7. (In the last example,
remember that 7 is just a set:7 = {0, 1, 2, 3, 4, 5, 6}.)
We can compare cardinal numbers, of course.#S < #T means that the cardinality of setS is strictly smaller
than the cardinality of setT . Mathematically this means that you can find a function that maps all the elements
of S 1 − 1 to elements ofT , but you cannot find such a function that maps to all the values inT . In other
words, you can find a1− 1 function that mapsS into T , but you cannot find a1− 1 function that mapsS onto
T . For example,#{1, 2, 3} < #{1, 2, 3, 4} since no matter how you map the elements of{1, 2, 3} into the set
{1, 2, 3, 4}, something in the latter set will be left out.
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2 Infinite Cardinal Numbers

Notice that in our definition of when two sets have the same cardinality, we said nothing about whether they were
finite or not. In fact the setN of natural numbers is certainly not finite, but our definition of cardinality allows us
to talk about sets that have the same cardinality asN.

We will need a cardinal number to represent the cardinality ofN, and what is traditionally used for this isℵ0,
whereℵ (pronounced “aleph”) is the first letter in the Hebrew alphabet. The fact that there’s a subscript0 in ℵ0

is a pretty clear indication that we will come across some other cardinal numbers in the future. In fact,ℵ0 is the
smallest infinite cardinal number,ℵ1 is the next larger,ℵ2 the next, and so on1. So the notation introduced in the
last section can be extended easily:#N = ℵ0.

Let’s look at a few examples.

The set of all even natural numbers:E = {0, 2, 4, 6, . . .} is also clearly infinite, but it seems to have only half as
many elements as are inN. Surprisingly (perhaps), the setsN andE have the same cardinality.

Here’s the proof: Letf(n) = 2n, andf mapsN into E. It’s easy to see thatf never maps two numbers to the
same number, and thatf has all ofE as its range. ThusN andE have the same cardinality:#N = #E = ℵ0.

What if we add an element toN to make a slightly larger set? Suppose we stick in an elementa that’s not a
natural number to make the setN′ = {a, 0, 1, 2, 3, . . .}. What is the cardinality ofN′? (To make it definite, let
a = {{{}}} which is not a natural number: in fact,a = {1}.)
The answer is again that it has the same cardinality asN. Here is a functionf fromN toN′ that will do the trick:

f(x) =
{

a : x = 0
x− 1 : x > 0

Thus#N′ = ℵ0.

In both cases above, we had sets where one was a strict subset of the other:E ⊂ N ⊂ N′, butE 6= N 6= N′. So
one set can be larger than another (in the sense that it contains all the elements of the other and some additional
ones), but it can be the same size (from the point of view of cardinality). This is a very important concept; read
this paragraph again.

Thus far, all the infinite sets we’ve looked at are the same size asN. Let’s see if we can find one that’s larger. A
natural place to look might be the rational numbersQ–the set of all fractions.

But again, it turns out that there are the same number of rational numbers as there are natural numbers. We will
show that this is the case for the positive rational numbers, and it is not difficult to extend the argument to show
that the set of all rational numbers–positive, negative, or zero–can be matched with the natural numbers in a1−1
manner.

We begin by making a two-dimensional “list” of all the (positive) rational numbers. In fact, this list has more
entries than do the rational numbers because we’ve listed all possible representations of them–the list contains
not only2/3, but also4/6, 6/9, 8/12, and so on:

1/1 1/2 1/3 1/4 1/5 · · ·
2/1 2/2 2/3 2/4 2/5 · · ·
3/1 3/2 3/3 3/4 3/5 · · ·
4/1 4/2 4/3 4/4 4/5 · · ·
5/1 5/2 5/3 5/4 5/5 · · ·

...
...

...
...

...
.. .

Now, starting at the upper left corner, number the positions in this two-dimensional table of fractions going back

1You may be amazed at what “and so on” actually means!
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and forth, advancing along the diagonal as follows:

0 1 5 6 14 · · ·
2 4 7 13 16 · · ·
3 8 12 17 25 · · ·
9 11 18 24 31 · · ·
10 19 23 32 40 · · ·
...

...
...

...
...

.. .

If you don’t understand the numbering scheme, use your pencil to do a “connect the dots”: draw a line starting
at 0 and then going to 1, 2, 3, 4, 5, 6, and so on. You’ll see that the path is boustrophedontic. Also, make sure
you realize where the missing numbers in the list are (like 15 or 20, or 42).

So the functionf we are looking for that matches all the natural numbers with pairs of natural numbers looks
like this:

f = {(0, 1/1), (1, 1/2), (2, 2/1), (3, 3/1), (4, 2/2), (5, 1/3), (6, 1/4), (7, 2/3), . . .}.
As we warned above, this isn’texactlywhat is needed: a true mapping would match one integer to every rational
number that had not yet been listed. The following enumeration does exactly that– an “X” in the table indicates
that nothing is mapped to that particular fraction:

0 1 4 5 10 · · ·
2 X 6 X 12 · · ·
3 7 X 13 19 · · ·
8 X 14 X 23 · · ·
9 15 18 24 X · · ·
...

...
...

...
...

.. .

With a numbering scheme like the one above, it is clear that it is possible to construct a1− 1 mapping from the
natural numbers onto the positive rational numbers. It’s a nice exercise to convert this function to one that maps
the natural numbers1− 1 onto the entire setQ of rational numbers. Therefore#Q = ℵ0.

But we’re still not making any progress–we tried to find a larger set, and the rationals seemed like they might
be–but in fact the cardinality of the rationals is the same as the cardinality of the natural numbers.

Let’s try again. Let’s letP be the set of all polynomials with natural number coefficients2.

P thus consists of all the polynomials that look like these:

1
3x + 17
x2 + 3x + 41
x5 + 5x4 + 3x3 + 7x2 + 121x + 11213
x100020102 + 4356654x100020101 + · · ·+ 17x + 41

We’ll allow polynomials with any number of terms, and we’ll lump them all into one giant set. Surely this set
has more elements than the integers, right?

Nope: there are the same number of items in both sets.

What follows is an amazingly simple way to map all the polynomials above into the integers so that nothing is
left out. It is all based on the idea of prime factorization of the integers. (Our proof will work for polynomials

2Note that it wouldn’t help to make it be the set of all polynomials with rational coefficients since we already know that there are the same
number of rational numbers as there are of natural numbers.
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with non-negative coefficients. Again, it is no big deal to extend it to the general case, but things are slightly
uglier.)

Recall that any natural number can be written in a unique way as the product of prime numbers. For convenience,
let’s assign a nice series of names to the primes:p0 = 2, p1 = 3, p2 = 5, p3 = 7, p4 = 11, p5 = 13, and so on.
Thus,pi is theith prime number, where we begin numbering from zero.

Now, if k0, k1, k2, . . . is a series of integers where all but a finite number of them are zero, then every different
sequence of theki represents a different integer of the form:

pk0
0 pk1

1 pk2
2 pk3

3 pk4
4 · · · =

∞∏

i=0

pki
i .

Notice that we can run the infinite product above to infinity since almost all theki are equal to zero, so that almost
all of thepki

i will be 1. And the really great thing is that for any different sequence ofki, the product above will
generate a different integer, and all the integers are generated by some series ofki.

Let’s write down the most general polynomial:

k0 + k1x + k2x
2 + k3x

3 + k4x
4 + · · · =

∞∑

i=0

kix
i,

where all but a finite number of theki are equal to zero.

But doesn’t this provide an exact,1−1 mapping between the polynomials with coefficients in the natural numbers
and the natural numbers themselves? Yes–so there are the same number of polynomials (of any degree) as there
are natural numbers:#P = ℵ0. We still have not succeeded in constructing a set or cardinality larger thanN.

2.1 A Larger Cardinal Number

Remember the axiom of the power set from the previous lecture? It states that if you start with any set, there
exists a set consisting of all of the subsets of that set, called the power set of the original set. For example, if the
set you begin with isS = {0, 1, 2}, then the following set, consisting of all its subsets, is also a set:

P(S) = {{}, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.

We use the notationP(S) to indicate the “power set ofS”.

In general, ifS is a finite set of cardinalityn, then the cardinality ofP(S) is 2n. That’s because for every element
x of S, and every subsetT ⊂ S, eitherx ∈ T or 6∈ T , and since that decision has to be made for every elementx
of S, the size of the power set is2n. Check the example above to see that the cardinality of({0, 1, 2}) = 23 = 8.

But there was nothing in the power set axiom that required the set to be finite. We can, for example, look at
P(N). How big is it? We will show that#P(N) > #N.

How can we possibly do this? How do we show that no matter what function you examine, it will not match up
the elements ofN with the elements ofP(N)?
Here’s how it is done. Suppose that there is some way to match up the elements. We will show that whatever
scheme you use, something is left out.

The nice thing about subsets is that to identify the subset, all you have to know for each element in the original
set is whether it is in the subset or not. Thus, we can write down a complete description of a subset ofN in the
following form:

0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
S 0 1 1 0 0 0 1 0 0 1 1 1 0 · · ·
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Wherever there is a 1, the natural number is in the set; wherever there is a 0, it is not in the subset. So in the
example above, the setS contains 1, 2, 6, 9, 10, 11, and perhaps some other entries beyond number 12.

As a concrete example, the complete list of subsets of the finite set{0, 1, 2} that we considered above in this
form:

0 1 2
{} 0 0 0
{0} 1 0 0
{1} 0 1 0
{2} 0 0 1
{0, 1} 1 1 0
{0, 2} 1 0 1
{1, 2} 0 1 1
{0, 1, 2} 1 1 1

If we want to list a series of subsets, we would form a table something like the following, whereS0, S1, S2, et
cetera, are the sets. (For now, ignore the boxes surrounding some of the numbers.) In this example, the subsetS0

contains 1, 2, 6, 9, 10, 11, . . . ;S1 contains 0, 1, 4, 6, 9, 11, 12, . . . , and so on.

0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
S0 0 1 1 0 0 0 1 0 0 1 1 1 0 · · ·
S1 1 1 0 0 1 0 1 0 0 1 0 1 1 · · ·
S2 1 1 1 1 1 1 1 1 0 1 1 0 0 · · ·
S3 0 1 0 1 0 0 0 0 1 1 0 1 0 · · ·
S4 0 1 0 0 0 0 0 0 0 1 0 1 0 · · ·
S5 0 0 0 0 0 0 1 1 0 0 1 0 1 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

Suppose there is some way to match up the natural numbers with all the subsets of the natural numbers. Then
there will be some function that maps every natural numbern into some subsetSn of the natural numbers in such
a way that every subset is listed exactly once.

If this were possible, we could make a listing of the subsets as in the table above where all the slots are filled
with 0 or 1. We will now show that no matter how the list is arranged, at least one of the subsets has been left
out. To illustrate, suppose the table above gives a function that works (matches subsets ofN N ). Consider all
the elements on the diagonal (they have boxes around them in the figure), and make a new subsetSm that has a
1 wherever the diagonal is 0, and a 0 wherever it is one. For the example above,Sm would look like this:

0 1 2 3 4 5 · · ·
Sm 1 0 0 0 1 1 · · ·

This Sm is missing (the “m” subscript stands for “missing”) from the list. It couldn’t possibly beS0 because it
differs fromS0 for element 0. Similarly, it couldn’t beS1 since it differs fromS1 for element 1, and so on. Thus,
no matter how you number the subsets, at least one of them will be left out, so we know that#P(N) > #N = ℵ0.

This method above can be used in other settings, and is usually called “Cantor’s diagonalization method”, since
you go down the diagonal and change whatever you find there. Georg Cantor was the mathematician who did
much of the fundamental work with cardinal and ordinal numbers (and he happened to speak Hebrew, which
accounts for the Hebrew letterℵ as part of the name of infinite cardinal numbers).

6



How much bigger is#P(N) thanℵ0? Is#P(N) = ℵ1, the next larger cardinal? Or are there cardinal numbers
betweenℵ0 and#P(N)? The long answer is far too difficult to discuss here3, but the short answer (without
proof) is that the set-theoretic statement that#P(N) = ℵ1 is undecidable using the axioms of Zarmelo-Frankel
set theory. There is no way to prove that it is true, and no way to prove that it is false. You can add it as an axiom
to the set of Z-F axioms, and if the axioms are consistent by themselves, they will continue to be consistent with
the addition of this as an axiom. But you can also add the negation of this statement as an axiom, and that is also
perfectly consistent.

The statement that#P(N) = ℵ1 is called the “continuum hypothesis” because the cardinality of the collection
of subsets ofN turns out to be the cardinality of the real numbers,R, and one often refers to the continuum of
real numbers, since they are packed together continuously along the real line.

In fact, if you read most explanations of set theory, you’ll find that the first example given of a set with cardinality
larger than the natural numbers is the set of real numbers. The proof is quite similar to what we did above. Here’s
roughly how it goes.

First, we’ll just show that the cardinality of a small part of the reals is still larger than the cardinality of the
natural numbers; we will just look at the real numbersx such that0 ≤ x < 1. Every one of those numbers has
an infinite decimal expansion, for example1/2 = .500000 . . ., 1/3 = .33333 . . ., 1/7 = .142857142857 . . .,
π − 3 = .1415926535 . . .,

√
2− 1 = .4142135 . . ., and so on.

As before, we assume there is some way to number them all with the natural numbers, and we could form a list:

0 → .50000000000000000000000000000000000000000000000000000000000 . . .

1 → .33333333333333333333333333333333333333333333333333333333333 . . .

2 → .14285714285714285714285714285714285714285714285714285714285 . . .

3 → .14159265358979323846264338327950288419716939937510582097494 . . .

4 → .41421356237309504880168872420969807856967187537694807317668 . . .

and so on.

Then, to show that at least one real number was left out, go down the diagonal and make up a new number that
differs in theith decimal place from the real number corresponding toi (where we number the decimal places
from number zero). So if the above list were supposed to be complete, we merely need to find a number that has
something other than a 5 in the zeroth slot, other than a 3 in the first slot, other than a 2 in the second slot, and
so on. In fact, we could just add 1 to each unless it was a 9, in which case it would wrap back to zero. The first
five decimal places of a real number guaranteed to be missing from the list above with that strategy would be
.64362 . . ..

In fact, if we had written the numbers not as decimal expansions, but as binary expansions, our proof would be
virtually identical with the proof using subsets, since the binary expansions would just be series of zeroes and
ones.

A minor annoyance that complicates both of the above examples (although it is not hard to fix) is that many num-
bers (in fact, infinitely many) have two different decimal (or binary) expansions. For example,.3999999 . . . = .4,
.1314999999 . . . = .1315, et cetera (where we assume, of course that the 9’s continue forever). For one thing,
we must be certain that only one version is listed for every real number on the right, and for another, that the
resulting infinite decimal is not one of the ambiguous ones, and hence appearing elsewhere on the list.

In any case, it is true that#R = #P(N).

3Paul Cohen proved, using a method called “forcing”, that this so-called “continuum hypothesis” is independent of the other axioms of
Z-F set theory. His proof fills an entire book.
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3 Still Larger Cardinals

Cantor’s diagonalization process can be used with any setS, finite or infinite, to show that#S < #P(S). In
other words, the collection of subsets of a given set always has a larger cardinality than the cardinality of the
original set.

We have already seen that ifS is finite, then if#S = n, then#P(S) = 2n. We will simply use the same
notation for infinite cardinals, and we have shown above that#R = 2ℵ0 .

But the cardinality of the collection of all subsets ofR is larger than the cardinality ofR itself, so we’ve got an
even larger cardinal, and there is no reason we cannot continue this for as long as we want. For any cardinal that
exists, you can construct a larger one simply by taking its power set.

Thus we have an infinite collection of cardinal numbers:

ℵ0,ℵ1,ℵ2,ℵ3,ℵ4, . . . .

So that must be all of them, right?

No!

Using the axioms of set theory, it is easy to show that the following is also a valid set:

{ℵ0,ℵ1,ℵ2,ℵ3,ℵ4, . . .}.
And another axiom of set theory tells us that we can take the union of all the elements of a valid set and obtain
another valid set, so

ℵ0 ∪ ℵ1 ∪ ℵ2 ∪ . . .

is also a valid set4.

How big is it? Well, for everyi, it must be larger thanℵi, since we know that there are more thanℵi+1 elements
in it.

This is, in fact, the smallest “limit cardinal”. We can write it as:

ℵℵ0 .

But you can see where this is going to lead–the power set ofℵℵ0 is larger still, and we can keep applying the
power set operations to the resulting sets, and then take the union of all of those, for a second limit cardinal. And
a third, and a forth, et cetera, an infinite number of times. Well, why not take the union of all of those. Eventually,
we’ll get to:

ℵℵ1 .

But why stop here? Continue toℵℵ2 , ℵℵ3 , and so on. Then taketheir union. What is this:

ℵℵ0 ∪ ℵℵ1 ∪ ℵℵ2 ∪ ℵℵ3 ∪ . . .?

It is obviously:
ℵℵℵ0

.

There is literally no end to the process. We can form:

ℵ0,ℵℵ0 ,ℵℵℵ0
,ℵℵℵℵ0

,ℵℵℵℵℵ0
, . . .

and then we can union all of them together, et cetera.

4The sharp-eyed reader will notice that we have cheated a little bit here, and assumed that for each cardinal number we actually have a
set of that size, in the same way that we had sets for all the finite cardinals, with the set “7” being a set of 7 elements. It is possible to do this,
but in this paper we have not shown how. The section on ordinal numbers (see section 4) will give some indication of how this is done.
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3.1 The Schr̈oder-Bernstein Theorem

Although we will not prove it here5, the Schr̈oder-Bernstein Theorem shows, in a sense, that all the analysis
above makes sense.

We have already seen that it is difficult sometimes to construct a function that maps a set perfectly1 − 1 onto
another one. For example, our first numbering of the rationals had every possible version of every fraction:1/2,
2/4, 3/6, et cetera, in the table, and we had to go to some trouble to get rid of the duplicates to show that there
was really an exact matching function.

The Schr̈oder-Bernstein Theorem allows us to be lazy. It says that ifS andT are any two sets (of any cardinality),
and if you can find a functionf that mapsS 1 − 1 into (not necessarilyonto) T , and you can find a functionsg
that mapsT 1 − 1 into (again, not necessarilyonto) S, then#S = #T . In other words, the existence of such
functionsf andg guarantee the existence of another functionh that mapsS 1− 1 andontoT .

4 Ordinal Numbers

If you paid attention in your English language classes, you learned the difference between the cardinal numbers
and the ordinal numbers. The cardinal numbers are “one”, “two”, “three”, and so on, and the ordinal numbers
are “first”, “second”, “third”, and so on.

Mathematicians don’t bother with this distinction, and since we usually write the numbers as “23” instead of
“twenty three”, for a mathematician, the cardinal numbers are 0, 1, 2, 3, . . . , and the ordinal numbers are 0, 1, 2,
3, . . . . And there’s another difference: English teachers tend to start at 1 and mathematicians start at zero.

So they’re the same, right? Well, no. All thefiniteones are the same, but then there’s a difference. In this section,
we’ll look at the construction of the infinite ordinals.

The way that both English and mathematics use the ordinal numbers and the cardinal numbers is similar, however.
The cardinal numbers are used to count things, and the ordinal numbers are used to order things. Thus the “one”,
“two”, “three” versus “first”, “second”, “third” distinction in English makes good sense.

What we intend to do is follow the same general plan that we have used up to now, with a few hints taken from
how we treated the cardinal numbers. Once we had a definite ordinal numbern, we could make the next one,
which we called “n + 1” by letting n + 1 = n ∪ {n}. This works fine, and in the case of the finite numbers,
it can go on forever, but it will never get us to infinity: we can keep making numbers that are larger and larger,
but every particular number we make is still finite. To get to the first infinite cardinal number,ℵ0, we needed to
somehow take the union of all the numbers up to that point:

ℵ0 = 0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ · · ·

Notice how this makes perfect sense:

ℵ0 = {} ∪ {0} ∪ {0, 1} ∪ {0, 1, 2} ∪ {0, 1, 2, 3} ∪ · · ·
In other words,

ℵ0 = {0, 1, 2, 3, 4, . . .} = N,

so the first infinite cardinal,ℵ0, is the same asN.

Sinceℵ0 = N is the first infinite cardinal, we will see that it also makes sense to make it the first infinite ordinal,
and (again for reasons that will become clearer later on), we will give it a third name if we want to think of it
as an ordinal: we’ll call itω–the Greek letter “omega”–soℵ0 = N = ω. Omega is the last letter of the Greek
alphabet, so “from alpha to omega” means “from the beginning to the end: omega is the end. As we shall see
later, this is quite a joke.

5For a proof, see Patrick Suppe’s Book entitled, “Axiomatic Set Theory”.
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4.1 Constructing the Infinite Ordinals

If ω is the first infinite ordinal, why not go ahead and make the next ordinal as usual:ω + 1 = ω ∪ {ω}? In fact,
that’s just what is done.

As soon as we haveω + 1, we can constructω + 2: ω + 2 = (ω + 1) ∪ {ω + 1}. Similarly, we can construct
ω + 3, ω + 4, et cetera.

How big areω + 1, ω + 2, et cetera? In other words, what is the cardinality of these sets? Actually, we already
worked out the cardinality ofω + 1 in section 2–we found the cardinality ofN ∪ {a}, wherea is any object not
in N–it is justℵ0.

Similarly, it is not hard to show that#(ω + 1) = #(ω + 2) = #(ω + 3) = · · · = ℵ0.

Since we have constructed, as sets,ω + 1, ω + 2, ω + 3, and so on, we can union them all together to get:

ω + 1 ∪ ω + 2 ∪ ω + 3 ∪ · · · = ω × 2,

where “×” can be interpreted as multiplication.

From there, it is a simple matter to continue toω× 2 + 1, ω× 2 + 2, et cetera. These can all be unioned together
to makeω × 3. Similarly, we can makeω × 4, ω × 5, et cetera.

If we union all ofω, ω × 2, ω × 3, et cetera, we can get toω × ω = ω2.

There is a nice way to visualize these ordinals6.). Begin by imagining that each ordinal is represented by a row
of telephone poles. So the ordinal 5 is represented by 5 telephone poles in a row, et cetera. This works fine for
any finite number, but if you would like to visualizeω, it’s an infinite line of poles, beginning at zero, and going
on forever. Since it’s difficult to draw an infinite number of them on a finite page, we’ll imagine them “drawn
in perspective”, disappearing toward the horizon. So 3 telephone poles (corresponding to the ordinal number 3)
looks like this:

Thenω of them would look like this:

Given this visualization method, here are whatω + 1, ω + 2, andω + 3 look like:

Continuing with a couple of other examples, here is whatω × 2, ω × 2 + 3, andω × 3 + 2 look like:

To add two ordinals together, you just draw the pictures next to each other and see what the resulting picture
looks like. We must be a bit careful (and this is where the telephone pole example helps) in the order that we
add them. If you already have an infinite number of poles going off to the horizon (numbered from zero on up),
and you add a pole in front of pole number zero (sort of like pole number−1), then it’s really not going to look
any different from what you had before: it’s just an infinite number of telephone poles starting from a fixed pole.
Thus, we have1 + ω = ω. Here’s the picture you get by drawing a1 followed by anω:

6This is due to John Conway: see his book written with Richard Guy entitled “The Book of Numbers”
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It is just like the drawing forω except that we’ve drawn the perspective a little wrong.

ω + 1, however, is clearly different: there’s a new pole placed “after” the horizon. The new pole you placed has
nothing after it, while every pole in the originalω had something after it. It’s easy to see that adding 2 or 3 or
even 1000000 poles in front ofω make no change in the general drawing:

2 + ω = 3 + ω = 1000000 + ω = ω,

but
ω + 2 6= ω + 3 6= ω + 1000000 6= ω.

Thus ordinal arithmetic is not commutative: ifα and β are two ordinals, it is not necessarily the case that
α + β = β + α. Sometimes it is:2 + 5 = 5 + 2, or ω + ω × 2 = ω × 2 + ω, and sometimes it is not:
ω + 1 6= 1 + ω.

So what is(ω + 2) + (ω × 2 + 3) + ω? Draw them out and see:

which is clearly equal toω × 4, with a few extra poles that get sucked up by intermediatesωs.

Of course we’ve been a little sloppy; we’ve used the notationω × 2, but what does it mean?ω × 2 is 2 copies of
ω, and2× ω is ω copies of2. We know what two copies ofω look like: just two sets of poles disappearing into
the horizon, butω copies of 2 just amounts to putting down 2 poles, then 2 more, then 2 more, et cetera,ω times.
So2× ω = ω 6= ω × 2
If we take the union ofω, ω × 2, ω × 3, ω × 4, we clearly getω copies ofω, which we would write asω × ω, or
asω2, looking something like this:

· · ·

It would perhaps be even better if we drew each of theωs so that they tended to disappear into a second horizon,
et cetera:

But then, as before, we can look atω2 + 1, ω2 + 2, . . . ,ω2 + ω, ω2 + ω + 1, . . . ,ω2 + ω × 2, . . . ,ω2 + ω × 3,
. . . ,ω2 + ω2 = ω2 × 2, . . . ,ω2 × 3, . . . ,ω2 × 4, . . . ,ω3, . . . ,ω4, . . . ,ω5, . . . ,ωω, ωω + 1, . . . .

Although we haven’t proved it, all of the ordinals listed in the previous paragraph have the same cardinality:ℵ0.
This may seem wrong, but it’s true. In fact, when we were looking at our first examples of cardinal numbers, we
essentially proved a bunch of the ordinals above to have the same cardinality.

Look atω + 1. Isn’t that like the set{a, 0, 1, 2, 3, . . .} which we calledN′ in section 2? How about the rational
numbersQ? A little thought should convince you thatQ looks a heck of a lot likeω2. And how aboutP, the set
of all polynomials with integer coefficients? Again, a little thought will show you thatP looks just like

ω + ω2 + ω3 + · · · = ωω.

The firstω is the constant polynomials; theω2 is the size of the polynomials of the formax+b; theω3 corresponds
to the set of polynomials of the formax2 + bx + c, et cetera.
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It begins to boggle the mind, doesn’t it? But let’s do one last boggle before ending this paper: it’s essentially
equivalent to what mathematicians call the “well-ordering principle”. Imagineanyordinal, as complex as you
want. Start from there, and count down. By counting down is meant simply writing a sequence of decreasing
ordinals: you don’t have to (and you can’t) hit all of them. What is truly mind-boggling is that no matter how
you choose to count down, your entire list has to be finite. Play with it and see!
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